Advertisement

Stylistic Walk Synthesis Based on Fourier Decomposition

  • Joelle Tilmanne
  • Thierry Dutoit
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 124)

Abstract

We present a stylistic walk modeling and synthesis method based on frequency analysis of motion capture data. We observe that two peaks corresponding to the walk cycle fundamental frequency and its first harmonic can easily be found for most walk styles in the Fourier transform. Hence a second order Fourier series efficiently represents most styles, as assessed in the subjective user evaluation procedure, even though it results in a strong filtering of the original signals and hence a strong smoothing of the resulting motion sequences.

Keywords

motion capture synthesis Fourier transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forsyth, D.A., Arikan, O., Ikemoto, L., O’Brien, J., Ramanan, D.: Computational studies of human motion: Part 1, tracking and motion synthesis. Foundations and Trends in Computer Graphics and Vision 1(2-3), 77–254 (2005)CrossRefGoogle Scholar
  2. 2.
    Williams, R.: Animator’s Survival Kit: A Manual of Methods, Principles, and Formulas for Classical, Computer, Games, Stop Motion, and Internet Animators. Faber & Faber (2002)Google Scholar
  3. 3.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM SIGGRAPH 2008 Classes, p. 51. ACM (2008)Google Scholar
  4. 4.
    Glardon, P., Boulic, R., Thalmann, D.: PCA-based walking engine using motion capture data. In: Computer Graphics International, pp. 292–298. IEEE (2004)Google Scholar
  5. 5.
    Brand, M., Hertzmann, A.: Style machines. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 183–192. ACM Press/Addison-Wesley Publishing Co. (2000)Google Scholar
  6. 6.
    Li, Y., Wang, T., Shum, H.Y.: Motion texture: A two-level statistical model for character motion synthesis. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 465–472. ACM (2002)Google Scholar
  7. 7.
    Tilmanne, J., Dutoit, T.: Continuous control of style and style transitions through linear interpolation in hidden markov model based walk synthesis. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science XVI. LNCS, vol. 7380, pp. 34–54. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Troje, N.F.: Retrieving information from human movement patterns. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding Events: How Humans See, Represent, and Act on Events, vol. 1, pp. 308–334. Oxford University Press (2008)Google Scholar
  9. 9.
    Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995 Proceedings, pp. 97–104 (1995)Google Scholar
  10. 10.
    Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: SIGGRAPH 1995 Proceedings, pp. 91–96 (1995)Google Scholar
  11. 11.
    Tilmanne, J.: Joelle tilmanne’s webpage, http://tcts.fpms.ac.be/~tilmanne/
  12. 12.
    Troje, N.: The little difference: Fourier based gender classification from biological motion. Dynamic Perception, 115–120 (2002)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Joelle Tilmanne
    • 1
  • Thierry Dutoit
    • 1
  1. 1.Numediart InstituteUniversity of MonsMonsBelgium

Personalised recommendations