Personalized Summarization of Broadcasted Soccer Videos with Adaptive Fast-Forwarding

  • Fan Chen
  • Christophe De Vleeschouwer
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 124)


We propose a hybrid personalized summarization framework that combines adaptive fast-forwarding and content truncation to generate comfortable and compact video summaries. We formulate video summarization as a discrete optimization problem, where the optimal summary is determined by adopting Lagrangian relaxation and convex-hull approximation to solve a resource allocation problem. Subjective experiments are performed to demonstrate the relevance and efficiency of the proposed method.


Personalized Video Summarization Adaptive Fast forwarding Soccer Video Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, F., De Vleeschouwer, C.: Automatic summarization of broadcasted soccer videos with adaptive fast-forwarding. In: ICME 2011, pp. 1–6 (July 2011)Google Scholar
  2. 2.
    Chen, F., De Vleeschouwer, C.: Formulating team-sport video summarization as a resource allocation problem. TCSVT 21(2), 193–205 (2011)Google Scholar
  3. 3.
    Duxans, H., Anguera, X., Conejero, D.: Audio based soccer game summarization. In: BMSB 2009, pp. 1–6 (2009)Google Scholar
  4. 4.
    Ekin, A., Tekalp, A., Mehrotra, R.: Automatic soccer video analysis and summarization. TIP 12(7), 796–807 (2003)Google Scholar
  5. 5.
    Everett, H.: Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Operations Research 11(3), 399–417 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ferman, A., Tekalp, A.: Two-stage hierarchical video summary extraction to match low-level user browsing preferences. TMM 5(2), 244–256 (2003)Google Scholar
  7. 7.
    Fernandez, I., Chen, F., Lavigne, F., Desurmont, X., De Vleeschouwer, C.: Browsing sport content through an interactive h.264 streaming session. In: MMEDIA 2010, vol. 1, pp. 155–161 (June 2010)Google Scholar
  8. 8.
    Höferlin, B., Höferlin, M., Weiskopf, D., Heidemann, G.: Information-based adaptive fast-forward for visual surveillance. Multimedia Tools Appl. 55, 127–150 (2011)CrossRefGoogle Scholar
  9. 9.
    Holcombe, A.O.: Seeing slow and seeing fast: Two limits on perception. Trends in Cognitive Sciences 13(5), 216–221 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, Z., Schuster, G.M., Katsaggelos, A.K.: Minmax optimal video summarization. TCSVT 15, 1245–1256 (2005)Google Scholar
  11. 11.
    Ortega, A.: Optimal bit allocation under multiple rate constraints. In: DCC 1996, pp. 349–358 (1996)Google Scholar
  12. 12.
    Pan, H., van Beek, P., Sezan, M.I.: Detection of slow-motion replay segments in sports video for highlights generation. In: ICASSP 2001, vol. 3, pp. 1649–1652 (2001)Google Scholar
  13. 13.
    Peker, K.A., Divakaran, A., Sun, H.: Constant pace skimming and temporal sub-sampling of video using motion activity. In: ICIP 2001, vol. 3, pp. 414–417 (2001)Google Scholar
  14. 14.
    de Silva, G.C., Yamasaki, T., Aizawa, K.: Evaluation of video summarization for a large number of cameras in ubiquitous home. In: ACM MM 2005, pp. 820–828 (2005)Google Scholar
  15. 15.
    Zhu, G., Huang, Q., Xu, C., Rui, Y., Jiang, S., Gao, W., Yao, H.: Trajectory based event tactics analysis in broadcast sports video. In: ACM MM 2007, pp. 58–67 (2007)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Fan Chen
    • 1
  • Christophe De Vleeschouwer
    • 2
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations