Skip to main content

Composite Non-equilibrium Environments

  • Chapter
Open Quantum Systems Far from Equilibrium

Part of the book series: Lecture Notes in Physics ((LNP,volume 881))

  • 2708 Accesses

Abstract

This chapter discusses models that assume a stationary non-equilibrium steady state without any external interventions. Mostly, these may be implemented by electronic setups, e.g., with transport through quantum dots or molecules, but the general machinery is also applicable to quantum optical setups. We first investigate the single electron transistor (SET) and afterwards the double quantum dot (DQD) with a focus on the thermodynamic interpretation. To mimic the interaction of such systems with a charge detector, we afterwards consider interacting transport channels: two coupled SETs and an SET coupled to a low-transparency quantum point contact (QPC). We discuss the decoherence of a charge qubit induced by a QPC. As an example for a setup where the environment itself is in a non-equilibrium steady state that cannot be expressed as a simple tensor product of different equilibrium states, we discuss an SET (which is solved exactly) weakly coupled to a DQD. We conclude by discussing models involving bosons and fermions simultaneously: this includes a model where phonon-assisted tunneling may be exploited to implement a thermoelectric generator. Finally, we present a model where—despite the strong coupling between the electronic system and the bosonic reservoir—a description within a simple rate equation is still possible. Despite its low dimensionality, the model allows for a rich dynamics and inspiring thermodynamic interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2008)

    Google Scholar 

  2. M. Esposito, K. Lindenberg, C.V. den Broeck, Thermoelectric efficiency at maximum power in a quantum dot. Europhys. Lett. 85, 60010 (2009)

    Article  ADS  Google Scholar 

  3. G. Schaller, T. Krause, T. Brandes, M. Esposito, Single-electron transistor strongly coupled to vibrations: counting statistics and fluctuation theorem. New J. Phys. 15, 033032 (2013)

    Article  ADS  Google Scholar 

  4. T. Krause, G. Schaller, T. Brandes, Incomplete current fluctuation theorems for a four-terminal model. Phys. Rev. B 84, 195113 (2011)

    Article  ADS  Google Scholar 

  5. G. Schaller, G. Kießlich, T. Brandes, Low-dimensional detector model for full counting statistics: trajectories, back action, and fidelity. Phys. Rev. B 82, 041303 (2010)

    Article  ADS  Google Scholar 

  6. J. Mehl, B. Lander, C. Bechinger, V. Blickle, U. Seifert, Role of hidden slow degrees of freedom in the fluctuation theorem. Phys. Rev. Lett. 108, 220601 (2012)

    Article  ADS  Google Scholar 

  7. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Thermodynamics of a physical model implementing a maxwell demon. Phys. Rev. Lett. 110, 040601 (2013)

    Article  ADS  Google Scholar 

  8. G.B. Cuetara, M. Esposito, G. Schaller, P. Gaspard, Effective fluctuation theorems for electron transport in a double quantum dot coupled to a quantum point contact. Phys. Rev. B 88, 115134 (2013)

    Article  ADS  Google Scholar 

  9. D.S. Golubev, Y. Utsumi, M. Marthaler, G. Schön, Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer. Phys. Rev. B 84, 075323 (2011)

    Article  ADS  Google Scholar 

  10. Y. Utsumi, D.S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, G. Schön, Bidirectional single-electron counting and the fluctuation theorem. Phys. Rev. B 81, 125331 (2010)

    Article  ADS  Google Scholar 

  11. G. Bulnes Cuetara, M. Esposito, P. Gaspard, Fluctuation theorems for capacitively coupled electronic currents. Phys. Rev. B 84, 165114 (2011)

    Article  ADS  Google Scholar 

  12. M. Esposito, Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

  13. S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D.C. Driscoll, A.C. Gossard, Counting statistics of single electron transport in a quantum dot. Phys. Rev. Lett. 96, 076605 (2006)

    Article  ADS  Google Scholar 

  14. T. Fujisawa, T. Hayashi, R. Tomita, Y. Hirayama, Bidirectional counting of single electrons. Science 312, 1634 (2006)

    Article  ADS  Google Scholar 

  15. R. Sánchez, R. Lopez, D. Sanchez, M. Büttiker, Mesoscopic Coulomb drag, broken detailed balance, and fluctuation relations. Phys. Rev. Lett. 104, 076801 (2010)

    Article  ADS  Google Scholar 

  16. R. Hussein, S. Kohler, Coherent quantum ratchets driven by tunnel oscillations: fluctuations and correlations. Phys. Rev. B 86, 115452 (2012)

    Article  ADS  Google Scholar 

  17. C. Flindt, C. Fricke, F. Hohls, T. Novotny, K. Netocny, T. Brandes, R.J. Haug, Universal oscillations in counting statistics. Proc. Natl. Acad. Sci. USA 106, 10116 (2009)

    Article  ADS  Google Scholar 

  18. G. Kießlich, E. Schöll, T. Brandes, F. Hohls, R.J. Haug, Noise enhancement due to quantum coherence in coupled quantum dots. Phys. Rev. Lett. 99, 206602 (2007)

    Article  ADS  Google Scholar 

  19. B. Rutten, M. Esposito, B. Cleuren, Reaching optimal efficiencies using nanosized photoelectric devices. Phys. Rev. B 80, 235122 (2009)

    Article  ADS  Google Scholar 

  20. C.V. den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)

    Article  Google Scholar 

  21. F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  22. J. Koch, F. von Oppen, Franck–Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005)

    Article  ADS  Google Scholar 

  23. G.D. Mahan, Many-Particle Physics (Springer, Amsterdam, 2000)

    Book  Google Scholar 

  24. T. Brandes, Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 408, 315 (2005)

    Article  ADS  Google Scholar 

  25. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions. National Bureau of Standards, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaller, G. (2014). Composite Non-equilibrium Environments. In: Open Quantum Systems Far from Equilibrium. Lecture Notes in Physics, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-03877-3_5

Download citation

Publish with us

Policies and ethics