Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 881))

  • 2712 Accesses

Abstract

This chapter provides tools that are useful for the solution and handling of master equations. We start with simple analytic approaches including the equation of motion technique and the quantum regression theorem. As numerical techniques, we investigate a Runge–Kutta solver applied to a master equation and introduce the stochastic Schrödinger equation. For rate equations obeying local detailed balance, we treat the evolution of the Shannon entropy and connect it to the full counting statistics. We show how the statistics of energy and matter transfers can be extracted from the master equation. In particular, we demonstrate how the moments and cumulants of the corresponding distributions can be obtained. Finally, we relate symmetries in the respective generating functions with the fluctuation theorem for entropy production. The methods in this chapter may also be applied to Markovian master equations that are not in Lindblad form; only constant coefficients and a time-local evolution equation for the density matrix are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  2. N. Gershenfeld, The Nature of Mathematical Modeling (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  3. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  4. H.-P. Breuer, Genuine quantum trajectories for non-Markovian processes. Phys. Rev. A 70, 012106 (2004)

    Article  ADS  Google Scholar 

  5. H.-P. Breuer, J. Piilo, Stochastic jump processes for non-Markovian quantum dynamics. Europhys. Lett. 85, 50004 (2009)

    Article  ADS  Google Scholar 

  6. M. Esposito, K. Lindenberg, C.V. den Broeck, Universality of efficiency at maximum power. Phys. Rev. Lett. 102, 130602 (2009)

    Article  ADS  Google Scholar 

  7. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    MATH  Google Scholar 

  8. T. Krause, G. Schaller, T. Brandes, Incomplete current fluctuation theorems for a four-terminal model. Phys. Rev. B 84, 195113 (2011)

    Article  ADS  Google Scholar 

  9. L. Simine, D. Segal, Vibrational cooling, heating, and instability in molecular conducting junctions: full counting statistics analysis. Phys. Chem. Chem. Phys. 14, 13820 (2012)

    Article  Google Scholar 

  10. A.N. Jordan, E.V. Sukhorukov, Transport statistics of bistable systems. Phys. Rev. Lett. 93, 260604 (2004)

    Article  ADS  Google Scholar 

  11. G. Schaller, G. Kießlich, T. Brandes, Counting statistics in multistable systems. Phys. Rev. B 81, 205305 (2010)

    Article  ADS  Google Scholar 

  12. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  13. D. Andrieux, P. Gaspard, Fluctuation theorem for currents and Schnakenberg network theory. J. Stat. Phys. 127, 107 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. M. Campisi, P. Hänggi, P. Talkner, Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83, 771 (2011)

    Article  ADS  Google Scholar 

  17. Y. Utsumi, D.S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, G. Schön, Bidirectional single-electron counting and the fluctuation theorem. Phys. Rev. B 81, 125331 (2010)

    Article  ADS  Google Scholar 

  18. S. Nakamura, Y. Yamauchi, M. Hashisaka, K. Chida, K. Kobayashi, T. Ono, R. Leturcq, K. Ensslin, K. Saito, Y. Utsumi, A.C. Gossard, Nonequilibrium fluctuation relations in a quantum coherent conductor. Phys. Rev. Lett. 104, 080602 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaller, G. (2014). Technical Tools. In: Open Quantum Systems Far from Equilibrium. Lecture Notes in Physics, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-03877-3_4

Download citation

Publish with us

Policies and ethics