Skip to main content

Deconvolution of Huge 3-D Images: Parallelization Strategies on a Multi-GPU System

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8285))

Abstract

In this paper, we discuss strategies to parallelize selected deconvolution methods on a multi-GPU system. We provide a comparison of several approaches to split the deconvolution into subtasks while keeping the amount of costly data transfers as low as possible, and propose own implementation of three deconvolution methods which achieves up to 65× speedup over the CPU one. In the experimental part, we analyse how the individual stages of the computation contribute to the overall computation time as well as how the multi-GPU implementation scales in various setups. Finally, we identify bottlenecks of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amdahl, G.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the Spring Joint Computer Conference, April 18-20, pp. 483–485. ACM (1967)

    Google Scholar 

  2. Brigham, E., Morrow, R.: The fast Fourier transform. IEEE Spectrum 4(12), 63–70 (1967)

    Article  Google Scholar 

  3. Castleman, K.R.: Digital Image Processing. Prentice Hall (1996)

    Google Scholar 

  4. D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3D Fluorescence Microscopy Images Using Graphics Processing Units. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 690–699. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38 (1977)

    Google Scholar 

  6. Domanski, L., Bednarz, T., Vallotton, P., Taylor, J.: Heterogeneous parallel 3D image deconvolution on a cluster of GPUs and CPUs. In: 19th Int’l Congress on Modelling and Simulation, Perth, Australia (December 2011), http://mssanz.org.au/modsim2011/A8/domanski.pdf (cited August 1, 2013)

  7. Domanski, L., Bednarz, T., Gureyev, T.E., Murray, L., Huang, E., Taylor, J.A.: Applications of Heterogeneous Computing in Computational and Simulation Science. In: 2011 Fourth IEEE International Conference on Utility and Cloud Computing (UCC), pp. 382–389. IEEE (2011)

    Google Scholar 

  8. Domanski, L., Vallotton, P., Wang, D.: Two and three-dimensional image deconvolution on graphics hardware. In: Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, pp. 13–17 (July 2009)

    Google Scholar 

  9. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE 93(2), 216–231 (2005); Special Issue on Program Generation, Optimization, and Platform Adaptation

    Google Scholar 

  10. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall (2007)

    Google Scholar 

  11. Karas, P., Svoboda, D.: Convolution of large 3D images on GPU and its decomposition. EURASIP Journal on Advances in Signal Processing 2011(1), 120 (2011)

    Article  Google Scholar 

  12. Karas, P., Svoboda, D.: Algorithms for Efficient Computation of Convolution. In: Design and Architectures for Digital Signal Processing, 1st edn., pp. 179–208. InTech, Rijeka (2013)

    Google Scholar 

  13. Karas, P., Svoboda, D., Zemčík, P.: GPU optimization of convolution for large 3-D real images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 59–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Nussbaumer, H.: Fast Fourier transform and convolution algorithms. Springer Series in Information Sciences 2 (1982)

    Google Scholar 

  15. NVIDIA Corporation: CUFFT Library (2012), http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf (cited August 1, 2013)

  16. NVIDIA Corporation: NVIDIA Developer Zone (2012), http://developer.nvidia.com/category/zone/cuda-zone (cited August 1, 2013)

  17. Oppenheim, A., Schafer, R., Buck, J., et al.: Discrete-time signal processing, vol. 2. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  18. Pawliczek, P., Romanowska-Pawliczek, A., Soltys, Z.: Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy. Microscopy Research and Technique 73(3), 187–194 (2010)

    Google Scholar 

  19. Quammen, C.W., Feng, D., Taylor II, R.M.: Performance of 3D Deconvolution Algorithms on Multi-Core and Many-Core Architectures. University of North Carolina at Chapel Hill, Dpt. of Computer Science, Tech. Rep. (2009)

    Google Scholar 

  20. Serafini, T., Zanella, R., Zanni, L.: Gradient projection methods for image deblurring and denoising on graphics processors. In: Int. Conf. on Parallel Computing ParCo 2009. Advances in Parallel Computing, vol. 19, pp. 59–66 (2010)

    Google Scholar 

  21. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  22. Svoboda, D.: Efficient computation of convolution of huge images. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 453–462. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Trussell, H., Hunt, B.: Image restoration of space variant blurs by sectioned methods. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1978, vol. 3, pp. 196–198. IEEE (1978)

    Google Scholar 

  24. Verveer, P.J.: Computational and optical methods for improving resolution and signal quality in fluorescence microscopy. Ph.D. thesis, Delft TU (1998)

    Google Scholar 

  25. Voort, H., Strasters, K.: Restoration of confocal images for quantitative image analysis. Journal of Microscopy 178(2), 165–181 (1995)

    Article  Google Scholar 

  26. Wendykier, P., Nagy, J.G.: Image processing on modern CPUs and GPUs. Tech. rep., Emory University TR-2008-023 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Karas, P., Kuderjavý, M., Svoboda, D. (2013). Deconvolution of Huge 3-D Images: Parallelization Strategies on a Multi-GPU System. In: Kołodziej, J., Di Martino, B., Talia, D., Xiong, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2013. Lecture Notes in Computer Science, vol 8285. Springer, Cham. https://doi.org/10.1007/978-3-319-03859-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03859-9_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03858-2

  • Online ISBN: 978-3-319-03859-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics