Skip to main content

Shape-Constrained Deformable Models and Applications in Medical Imaging

  • Chapter
  • First Online:
Shape Analysis in Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 14))

Abstract

The recognition and segmentation of organs and anatomical structures in medical images is the basis for an efficient workflow and quantitative measurements in diagnostic and interventional applications. Numerous methods have been developed in the past for specific applications, and many of them are based on variants and extensions of active contours or active shape methods. We present an overview over shape-constrained deformable models that have specifically been developed for organ segmentation in 3D medical images. They rely on a pre-defined shape space like active shape models, but preserve some flexibility of active contour approaches as they allow deviations from the shape space. In particular, we describe our approach to shape parametrization and the concept of “Simulated Search” that we use to train boundary detection. Fully automatic segmentation is achieved by a segmentation chain comprising a localization step based on the Generalized Hough Transformation and subsequent model adaptation with increasing degrees of freedom. Finally, we show how shape-constrained deformable models allow to address clinical applications in cardiology and neurology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weese J, Kaus M, Lorenz C, Lobregt S, Truyen R, Pekar V (2001) Shape constrained deformable models for 3D medical image segmentation. In: Insana M, Leahy R (eds) Information processing in medical imaging—IPMI 2001. Lecture notes in computer science, vol 2082. Springer, Berlin, pp 380–387

    Google Scholar 

  2. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models—their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  3. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  4. Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104(3):e158–e177

    Article  Google Scholar 

  5. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis. Med Image Anal 1(2):91–108

    Article  Google Scholar 

  6. Montagnat J, Delingette H, Ayache N (2001) A review of deformable surfaces: topology, geometry and deformation. Image Vis Comput 19:1023–1040

    Article  Google Scholar 

  7. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  8. Kaus MR, Pekar V, Lorenz C, Truyen R, Lobregt S, Weese J (2003) Automated 3-D PDM construction from segmented images using deformable models. IEEE Trans Med Imaging 22(8):1005–1013

    Article  Google Scholar 

  9. Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27(9):1189–1201

    Article  Google Scholar 

  10. Bruijne M, Ginneken B, Viergever MA, Niessen WJ (2003) Adapting active shape models for 3d segmentation of tubular structures in medical images. In: Taylor C, Noble J (eds) Information processing in medical imaging—IPMI 2003. Lecture notes in computer science, vol 2732. Springer, Berlin, pp 136–147

    Google Scholar 

  11. Davatzikos C, Tao X, Shen D (2003) Hierarchical active shape models, using the wavelet transform. IEEE Trans Med Imaging 22(3):414–423

    Article  Google Scholar 

  12. Zhao Z, Aylward SR, Teoh EK (2005) A novel 3D partitioned active shape model for segmentation of brain MR images. In: Duncan J, Gerig G (eds) Medical image computing and computer-assisted intervention MICCAI 2005. Lecture notes in computer science, vol 3749. Springer, Berlin, pp 221–228

    Google Scholar 

  13. Ecabert O, Peters J, Weese J (2006) Modeling shape variability for full heart segmentation in cardiac CT images. In Reinhardt JM, Pluim JPW (eds) Proceedings of SPIE medical imaging, vol 6144, 6144–3R

    Google Scholar 

  14. Ecabert O, Peters J, Walker M, Ivanc T, Lorenz C, von Berg J, Lessick J, Vembar M, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15:863–876

    Google Scholar 

  15. Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32:111–142

    Article  Google Scholar 

  16. Montagnat J, Sermesant M, Delingette H, Malandain G, Ayache N (2003) Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images. Pattern Recogn Lett 24:815–828

    Article  Google Scholar 

  17. Sermesant M, Forest C, Pennec X, Delingette H, Ayache N (2003) Deformable biomechanical models: application to 4D cardiac image analysis. Med Image Anal 7:475–488

    Article  Google Scholar 

  18. Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8:245–254

    Article  Google Scholar 

  19. Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill DLG, Chapelle D, Razavi R (2006) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 10(4):642–656

    Article  Google Scholar 

  20. Brejl M, Sonka M (2000) Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans Med Imaging 19(10):973–985

    Article  Google Scholar 

  21. Heimann T (2008) Statistical shape models for 3D medical image segmentation. PhD thesis, Ruprecht-Karls-Universität, Heidelberg

    Google Scholar 

  22. Heimann T, Münzing S, Meinzer HP, Wolf I (2007) A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. In: Karssemeijer N, Lelieveldt B (eds) Information processing in medical imaging—IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, pp 1–12

    Google Scholar 

  23. Peters J, Ecabert O, Weese J (2005) Feature optimization via simulated search for model-based heart segmentation. In Lemke H, Inamura K, Doi K, Vannier M, Farman A (eds) Computer assisted radiology and surgery—CARS. International Congress Series, vol 1281. Elsevier, Amsterdam, pp 33–38

    Google Scholar 

  24. Peters J, Ecabert O, Meyer C, Kneser R, Weese J (2010) Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med Image Anal 14(1):70–84

    Article  Google Scholar 

  25. Cootes TF, Hill A, Taylor CJ, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12(7):355–366

    Article  Google Scholar 

  26. Lorenz C, von Berg J (2006) A comprehensive shape model of the heart. Med Image Anal 10(4):657–670

    Article  Google Scholar 

  27. Yang M, Li X, Turkbey B, Choyke P, Yan P (2013) Prostate segmentation in MR images using discriminant boundary features. IEEE Trans Biomed Eng 60(2):479–488

    Article  Google Scholar 

  28. Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13(2):111–122

    Article  MATH  Google Scholar 

  29. Schramm H, Ecabert O, Peters J, Philomin V, Weese J (2006) Towards fully automatic object detection and segmentation. In: Reinhardt JM, Pluim JPW (eds) Proceedings of SPIE medical imaging, vol 6144, pp 6144–02

    Google Scholar 

  30. Gall J, Lempitsky V (2009) Class-specific Hough forests for object detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1022–1029

    Google Scholar 

  31. Criminisi A, Shotton J, Robertson D, Konukoglu E (2011) Regression forests for efficient anatomy detection and localization in CT studies. In: Menze B, Langs G, Tu Z, Criminisi A (eds) Medical computer vision. Recognition techniques and applications in medical imaging. Lecture notes in computer science, vol 6533. Springer, Berlin, pp 106–117

    Google Scholar 

  32. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681

    Article  Google Scholar 

  33. Nyul LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42:1072–1081

    Article  Google Scholar 

  34. Peters J, Ecabert O, Meyer C, Schramm H, Kneser R, Groth A, Weese J (2007) Automatic whole heart segmentation in static magnetic resonance image volumes. In: Ayache N, Ourselin S, Maeder A (eds) Medical image computing and computer-assisted intervention MICCAI 2007. Lecture notes in computer science, vol 4792. Springer, Berlin, pp 402–410

    Google Scholar 

  35. Zagorchev L, Meyer C, Stehle T, Kneser R, Young S, Weese J (2011) Evaluation of traumatic brain injury patients using a shape-constrained deformable model. In: Liu T, Shen D, Ibanez L, Tao X (eds) Multimodal brain image analysis. Lecture notes in computer science, vol 7012. Springer, Berlin, pp 118–125

    Google Scholar 

  36. Alfakih K, Reid S, Jones T, Sivananthan M (2004) Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 14(10):1813–1822

    Article  Google Scholar 

  37. Thomas JD, Popovic ZB (2006) Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol 48(10):2012–2025

    Article  Google Scholar 

  38. Noble J, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  Google Scholar 

  39. Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184

    Article  Google Scholar 

  40. Ghersin E, Abadi S, Yalonetsky S, Engel A, Lessick J (2009) Clinical evaluation of a fully automated model-based algorithm to calculate left ventricular volumes and ejection fraction using multidetector computed tomography. Acute Cardiac Care 11:47–55

    Article  Google Scholar 

  41. Plumhans C, Keil S, Ocklenburg C, Mühlenbruch G, Berendt FF, Günter RW, Mahnken AH (2009) Comparison of manual, semi- and fully automated heart segmentation for assessing global left ventricular function in multidetector computed tomography. Invest Radiol 44(8):476–482

    Article  Google Scholar 

  42. Abadi S, Roguin A, Engel A, Lessick J (2010) Feasibility of automatic assessment of four-chamber cardiac function with MDCT: initial clinical application and validation. Eur J Radiol 74(1):175–181

    Article  Google Scholar 

  43. Peters J, Lessick J, Kneser R, Waechter I, Vembar M, Ecabert O, Weese J (2010) Accurate segmentation of the left ventricle in computed tomography images for local wall thickness assessment. In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds) Medical image computing and computer-assisted intervention MICCAI 2010. Lecture notes in computer science, vol 6361. Springer, Berlin, pp 400–408

    Google Scholar 

  44. Cribier A, Eltchaninoff H, Tron C, Bauer F, Agatiello C, Sebagh L, Bash A, Nusimovici D, Litzler PY, Bessou JP, Leon MB (2004) Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis. J Am Coll Cardiol 43(4):698–703

    Article  Google Scholar 

  45. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607

    Article  Google Scholar 

  46. Piazza N, de Jaegere P, Schultz C, Becker AE, Serruys PW, Anderson RH (2008) Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve tomography. Circ Cardiovasc Interv 1:74–81

    Google Scholar 

  47. Waechter I, Kneser R, Korosoglou G, Peters J, Bakker N, Boomen R, Weese J (2010) Patient specific models for planning and guidance of minimally invasive aortic valve implantation. In: Jiang T, Navab N, Pluim J, Viergever M (eds) Medical image computing and computer-assisted intervention MICCAI 2010. Lecture notes in computer science, vol 6361. Springer, Berlin, pp 526–533

    Google Scholar 

  48. Korosoglou G, Gitsioudis G, Waechter-Stehle I, Weese J, Krumsdorf U, Chorianopoulos E, Hosch W, Kauczor HU, Katus HA, Bekeredjian R (2013) Objective quantification of aortic valvular structures by cardiac computed tomography angiography in patients considered for transcatheter aortic valve implantation. Cathet Cardiovasc Interv 81(1):148–159

    Article  Google Scholar 

  49. Calkins H, Kuck KH, Cappato R, Brugada J et al (2012) 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace 14(4):528–606

    Google Scholar 

  50. Sra J, Krum D, Malloy A, Vass M, Belanger B, Soubelet E, Vaillant R, Akhtar M (2005) Registration of three-dimensional left atrial computed tomographic images with projection images obtained using fluoroscopy. Circulation 112(24):3763–3768

    Article  Google Scholar 

  51. Rhode K, Sermesant M, Brogan D, Hegde S, Hipwell J, Lambiase P, Rosenthal E, Bucknall C, Qureshi S, Gill J, Razavi R, Hill DLG (2005) A system for real-time XMR guided cardiovascular intervention. IEEE Trans Med Imaging 24(11):1428–1440

    Article  Google Scholar 

  52. Sra J, Narayan G, Krum D, Malloy A, COooley R, Bhatta A, Dhala A, Blanck Z, Nangia V, AkhtarM (2007) Computed tomography-fluoroscopy image integration-guided catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 18(4):409–414

    Google Scholar 

  53. Manzke R, Reddy VY, Dalal S, Hanekamp A, Rasche V, Chan RC (2006) Intra-operative volume imaging of the left atrium and pulmonary veins with rotational x-ray angiography. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention MICCAI 2006. Lecture notes in computer science, vol 4190. Springer, Berlin, pp 604–611

    Google Scholar 

  54. Manzke R, Meyer C, Ecabert O, Peters J, Noordhoek NJ, Thiagalingam A, Reddy VY, Chan RC, Weese J (2010) Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans Med Imaging 29(2):260–272

    Article  Google Scholar 

  55. Weese J, Peters J, Meyer C, Waechter I, Kneser R, Lehmann H, Ecabert O (2009) Patient-specific heart models for diagnosis and interventions. Medica Mundi 53(3):72–78

    Google Scholar 

  56. Marom EM, Herndon JE, Kim YH, McAdams HP (2004) Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230(3):824–829

    Article  Google Scholar 

  57. Kutra D, Saalbach A, Lehmann H, Groth A, Dries SP, Krueger MW, Doessel O, Weese J (2012) Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI 2012. Lecture notes in computer science, vol 7511. Springer, Berlin, pp 1–8

    Google Scholar 

  58. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    Article  Google Scholar 

  59. Shenton M, Hamoda H, Schneiderman J, Bouix S, Pasternak O, Rathi Y, Vu MA, Purohit M, Helmer K, Koerte I, Lin A, Westin CF, Kikinis R, Kubicki M, Stern R, Zafonte R (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6(2):137–192

    Article  Google Scholar 

  60. Zagorchev L, Goshtasby A, Paulsen K, McAllister T, Young S, Weese J (2011) Manual annotation, 3-D shape reconstruction, and traumatic brain injury analysis. In: Liu T, Shen D, Ibanez L, Tao X (eds) Multimodal brain image analysis. Lecture notes in computer science, vol 7012. Springer, Berlin, pp 52–59

    Google Scholar 

  61. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Weese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weese, J., Wächter-Stehle, I., Zagorchev, L., Peters, J. (2014). Shape-Constrained Deformable Models and Applications in Medical Imaging. In: Li, S., Tavares, J. (eds) Shape Analysis in Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-03813-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03813-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03812-4

  • Online ISBN: 978-3-319-03813-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics