Skip to main content

Low Temperature and Gravitation Wave Detectors

  • Chapter
  • First Online:

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 404))

Abstract

The success of a precision experiment is often associated to the use of low temperature techniques. In particular, when the thermal noise is a barrier for improving the experiment sensitivity, the cryogenics is crucial for beating this limitation. This strategy was applied in the case of the resonant gravitational wave detectors (GW) and now it is proposed for the future generation of the GW interferometers. In the following we summarize the history of GW detectors and we recall some of the basic principles of the cryogenic techniques. Then, we focus on the issues of cooling the mirrors of a GW interferometer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here we cite just few experiments among the several ones. A more detailed bibliography can be found in [7].

  2. 2.

    The Joule–Thomson cryocoolers are based on an adiabatic expansion of the gas through an impedance orifice or a valve. This procedure is called a throttling process, and it permits to cool the gas when it is kept below its inversion temperature.

  3. 3.

    During the cold war, the USA, Russia, and other countries stockpiled tens of thousands of nuclear weapons, and in doing so accumulated vast amounts of \(^3\)He. Initially, the National Nuclear Security Administration (NNSA) and its predecessor agencies, which have maintained the US tritium stockpile, used to consider the gas useless and they considered to vent it into the atmosphere. In the 1980s, however, scientists began to realize the potential of \(^3\)He as a neutron detector and the price skyrocketed.

  4. 4.

    The liquid phase above the \(\lambda \) point is named He-I.

  5. 5.

    The high thermal conductivity allows also for the propagation of temperature waves (called second sound), which are reflected and diffracted as standard waves, but which give rise to temperature variations in small regions.

  6. 6.

    The idea of using a reaction mass to control a suspended mirror has been originally pursued by the GEO group [25].

  7. 7.

    This technique is applied also in the cooling process of all the GW resonant antennas.

References

  1. J. Weber, Detection and generation of gravitational waves. Phys. Rev. 117, 306 (1960)

    Google Scholar 

  2. J. Weber, Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22, 1320 (1969)

    Article  ADS  Google Scholar 

  3. M. Lee, D. Gretz, S. Steppel, J. Weber, 1979 Gravitational radiation detector observations in 1973 and 1974. Phys. Rev. D19, 893 (1979)

    Google Scholar 

  4. J.L. Levine, B. Garwin, New negative results for gravitational wave detection and comparison with reported detector. Phys. Rev. Lett. 33, 794 (1974)

    Article  ADS  Google Scholar 

  5. D.H. Douglass, R.O. Gram, J.A. Tyson, R.W. Lee, Two-detector-coincidence search for bursts of gravitational radiation. Phys. Rev. Lett. 35, 480 (1975)

    Article  ADS  Google Scholar 

  6. B.W.P. Drever, J. Hough, B. Bland, G.W. Lessnoff, Search for short bursts of gravitational radiation. Nature 246, 340 (1973)

    Article  ADS  Google Scholar 

  7. O.D. Aguiar, Res. Astron. Astrophys. 11, 1–42 (2011)

    Article  ADS  Google Scholar 

  8. W. Fairbank, The use of low-temperature technology in gravitational wave experiments, in Proceedings of the International School on Experimental Gravitation (Italy, Varenna, 1972), p. 280

    Google Scholar 

  9. E. Mauceli, Z.K. Geng, W.O. Hamilton, W.W. Johnson, S. Merkowitz, A. Morse, The Allegro gravitational wave detector: data acquisition and analysis. Phys. Rev. D 54, 1264 (1996)

    Article  ADS  Google Scholar 

  10. P. Astone, M. Bassan, P. Bonifazi, P. Carelli, M.G. Castellano, G. Cavallari, E. Coccia, C. Cosmelli, V. Fafone, S. Frasca, E. Majorana, I. Modena, G.V. Pallottino, G. Pizzella, P. Rapagnani, F. Ricci, M. Visco, Long-term operation of the Rome "Explorer" cryogenic gravitational wave detector. Phys. Rev. D47, 362 (1993)

    ADS  Google Scholar 

  11. P. Astone, M. Bassan, P. Bonifazi, P. Carelli, E. Coccia, C. Cosmelli, V. Fafone, S. Frasca, A. Marini, G. Mazzitelli, Y. Minenkov, I. Modena, G. Modestino, A. Moleti, G.V. Pallottino, M.A. Papa, G. Pizzella, P. Rapagnani, F. Ricci, F. Ronga, R. Terenzi, M. Visco, L. Votano, Astropart. Phys. 7, 231 (1997)

    Article  ADS  Google Scholar 

  12. M. Cerdonio, M Bonaldi, D. Carlesso, E. Cavallini, S. Caruso, A. Colombo, P. Falferi, G. Fontana, P.L. Fortini, R. Mezzena, A. Ortolan, G.A. Prodi, L. Taffarello, G. Vedovato, S. Vitale, J.P. Zendri, The ultracryogenic gravitational-wave detector AURIGA. Class. Quant. Grav. 14, 1491 (1997)

    Google Scholar 

  13. F. Acernese et al., First joint gravitational wave search by the AURIGA EXPLORER NAUTILUS Virgo Collaboration. Class. Quant. Grav. 25, 205007 (2008)

    Google Scholar 

  14. L. Tisza, C. R. Acad. Sci. 207, 1035, 1186 (1938)

    Google Scholar 

  15. F. London, Phys. Rev. 54, 947 (1938)

    Article  ADS  MATH  Google Scholar 

  16. L.D. Landau, J. Phys. (USSR) 5, 7 (1941)

    Google Scholar 

  17. L.D. Landau, J. Phys. (USSR) 11, 91 (1947)

    Google Scholar 

  18. G. Bon Mardion, G. Claudet, P. Seyfert, Practical data on steady state heat transport in superfluid helium at atmospheric pressure. Cryogenics 19, 45 (1979)

    Google Scholar 

  19. P. Astone, M. Bassan, P. Bonifazi, E. Coccia, C. Cosmelli, Noise behaviour of the EXPLORER gravitational wave antenna during the l transition to superfluid phase. Cryogenics 32, 668 (1992)

    Article  ADS  Google Scholar 

  20. P. Puppo, F. Ricci, Cryogenics and Einstein telescope. Gen. Relativ. Gravit. 43, 657–669 (2011)

    Article  ADS  Google Scholar 

  21. F. Ricci, Low temperature and future gravitational wave experiments, ed. by J. Dumarchez, J.T.T. Van, in Proceedings of the XLIInd Rencontres de Moriond, Gravitational Waves and Experimental Gravity, vol. 177 (The Gioi Publishers, 2007)

    Google Scholar 

  22. E.I. Mikulin, A.A. Tarasov, M.P. Shkrebyonock, Low temperature expansion pulse tubes. In Advances in Cryogenic Engineering, vol. 29 (Plenum Press, New York, 1984), pp. 629–637

    Google Scholar 

  23. S. Zhu, P. Wu, Z. Chen, Double inlet pulse tube refrigerators: an important improvement. Cryogenics 30, 514 (1990)

    Article  Google Scholar 

  24. S. Caparrelli, E. Majorana, V. Moscatelli, E. Pascucci, M. Perciballi, P. Puppo, P. Rapagnani, F. Ricci, Vibration-free cryostat for low-noise applications of a pulse tube cryocooler. Rev. Sci. Instrum. 77, 095102 (2006)

    Article  ADS  Google Scholar 

  25. M.V. Plissi, K.A. Strain, Aspects of the suspension system for GEO600. Rev. Sci. Instrum. 69, 3055 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Ricci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ricci, F. (2014). Low Temperature and Gravitation Wave Detectors. In: Bassan, M. (eds) Advanced Interferometers and the Search for Gravitational Waves. Astrophysics and Space Science Library, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-319-03792-9_14

Download citation

Publish with us

Policies and ethics