Skip to main content

A Third Generation Gravitational Wave Observatory: The Einstein Telescope

  • Chapter
  • First Online:
Advanced Interferometers and the Search for Gravitational Waves

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 404))

Abstract

The first decade of the second millenium has seen the realization and the operation of the initial generation of large interferometric gravitational wave detectors, like Virgo and LIGO; these detectors demonstrated the capability of reaching their design sensitivity, which due to the novelty of their design was quite a challenging task. Achieving the target of the detection of gravitational waves still requires a large improvement in sensitivity. This is promised by the operation of the advanced detectors that are dominating the gravitational wave scene in the second decade of this century. But, in order to open the era of routine gravitational wave astronomy a new (third) generation of gravitational wave observation instruments will be needed. Will the third generation (3G) of gravitational wave observatories be the core of the gravitational astronomy in the third decade of this century? An overview of the technological progress needed to realize a 3G observatory, like the Einstein Telescope (ET), and a possible evolution scenario are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indicating with displacement noises the pile-up of all the noise sources that are causing an effective movement of the test masses, like seismic noise, thermal noise, ...

  2. 2.

    The higher the Young’s modulus of a body, the less deformation is generated by the same thermal energy, thus less thermal noise.

  3. 3.

    Useful to realize high dilution factor suspensions.

  4. 4.

    Currently used coatings are based on alternate layers of dielectric materials (see Chap. 8 for a detailed description); the high refraction index material \(\mathrm{Ta_2O_5}\) is dissipative and generates the largest fraction of the thermal noise. Grating reflectors are based on resonant waveguide grating nanostructures, grown on the surfaces of the mirror substrates. With this design it is possible to obtain high reflectivity with a single layer of high refraction index material or even without the deposition of \(\mathrm{Ta_2O_5}\) on a Silicon test mass. See [69] for an introduction.

  5. 5.

    Optical losses due, roughly, to the finite size of the mirrors with respect to the nominally infinite radial extension of a Gaussian beam.

  6. 6.

    The optical power deposited by the ligh impinging on the mirror surfaces, is extracted through the suspension fibers; the amount of heat to be extracted constrains the minimal diameter of the suspension fibers to a value that conflicts with the requirement to have very thin suspension fibers imposed by the request to have a high dilution factor in order to minimize the thermal noise.

References

  1. H. Grote, L.S. Collaboration, Class. Quantum Gravity 25(11), 114043 (2008)

    Article  ADS  Google Scholar 

  2. B. Abbott et al., LIGO Scientific Collaboration. Reports on Progress in Physics 72(7), 076901 (2009)

    Google Scholar 

  3. K. Arai, the TAMA Collaboration. J. Phys.: Conf. Ser. 120(3), 032010 (2008)

    ADS  Google Scholar 

  4. F. Acernese et al., Class. Quantum Gravity 25(11), 114045 (8pp) (2008)

    Google Scholar 

  5. J. Hough, S. Rowan, J. Opt. A: Pure Appl. Opt. 7(6), S257 (2005)

    Article  ADS  Google Scholar 

  6. J. Abadie et al., Class. Quantum Gravity 27(17), 173001 (2010). doi:10.1088/0264-9381/27/17/173001

    Article  ADS  Google Scholar 

  7. D.S. for the Advanced LIGO Team. Advanced ligo reference design (2009). https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1507

  8. The Virgo Collaboration, Advanced virgo technical design report (2012). https://tds.ego-gw.it/ql/?c=8940. VIR-0128A-12

  9. The ET Science Team, Einstein gravitational wave telescope conceptual design study (2011). https://tds.ego-gw.it/ql/?c=7954. ET-0106C-10

  10. M. Punturo et al., Class. Quantum Gravity 27(8), 084007 (2010)

    Article  ADS  Google Scholar 

  11. B. Sathyaprakash et al., Class. Quantum Gravity 29, 124013 (2012)

    Article  ADS  Google Scholar 

  12. L. Baiotti, B. Giacomazzo, L. Rezzolla, Phys. Rev. D 78, 084033 (2008). doi:10.1103/PhysRevD.78.084033, http://link.aps.org/doi/10.1103/PhysRevD.78.084033

  13. J.S. Read et al., Phys. Rev. D 79, 124033 (2009). doi:10.1103/PhysRevD.79.124033

    Article  ADS  Google Scholar 

  14. M. Shibata, Phys. Rev. Lett. 94(20), 201101 (2005). doi:10.1103/PhysRevLett.94.201101

    Article  ADS  Google Scholar 

  15. N. Andersson, Class. Quantum Gravity 20(7), R105 (2003). http://stacks.iop.org/0264-9381/20/i=7/a=201

  16. S. Woosley, Astrophys. J. 405, 273 (1993)

    Article  ADS  Google Scholar 

  17. K. Iwamoto et al., Nature 395, 672 (1998). http://dx.doi.org/10.1038/27155

  18. J.S. Bloom et al., Astrophys. J. 654(2), 878 (2007). http://stacks.iop.org/0004-637X/654/i=2/a=878

    Google Scholar 

  19. B. Abbott et al., Phys. Rev. D 72, 042002 (2005). doi:10.1103/PhysRevD.72.042002, http://link.aps.org/doi/10.1103/PhysRevD.72.042002

  20. B. Abbott et al., Phys. Rev. D 77, 062004 (2008). doi:10.1103/PhysRevD.77.062004, http://link.aps.org/doi/10.1103/PhysRevD.77.062004

  21. F. Acernese et al., Classical and Quantum Gravity 24(19), S671 (2007). http://stacks.iop.org/0264-9381/24/i=19/a=S29. (Virgo Collaboration)

  22. F. Acernese et al., Class. Quantum Gravity 25(22), 225001 (2008). http://stacks.iop.org/0264-9381/25/i=22/a=225001. (Virgo Collaboration)

  23. B.P. Abbott et al., Astrophys. J. 715(2), 1438 (2010). http://stacks.iop.org/0004-637X/715/i=2/a=1438. (The LIGO Scientific Collaboration and the Virgo Collaboration)

  24. J. Abadie et al., Astrophys. J. 760(1), 12 (2012). http://stacks.iop.org/0004-637X/760/i=1/a=12

    Google Scholar 

  25. B.D. Metzger, E. Berger, Astrophys. J. 746(1), 48 (2012). http://stacks.iop.org/0004-637X/746/i=1/a=48

    Google Scholar 

  26. B.S. Sathyaprakash, B.F. Schutz, C.V.D. Broeck, Class. Quantum Gravity 27(21), 215006 (2010). http://stacks.iop.org/0264-9381/27/i=21/a=215006

    Google Scholar 

  27. B.F. Schutz, Nature 323, 310 (1986). doi:10.1038/323310a0

  28. C. Messenger, J. Read, Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. (2011). http://arxiv.org/pdf/1107.5725v2.pdf

  29. W. Del Pozzo, Inference of the cosmological parameters from gravitational waves: application to second generation interferometers. (2012). http://arxiv.org/abs/1108.1317

  30. C.D. Ott, Class. Quantum Gravity 26(6), 063001 (2009). http://stacks.iop.org/0264-9381/26/i=6/a=063001

  31. M. Punturo, Advanced virgo sensitivity document (2012). https://tds.ego-gw.it/ql/?c=8877. VIR-0073D-12

  32. J. Peterson. Observations and modeling of seismic background noise. Open-File report 93–322 (1993). http://earthquake.usgs.gov/regional/asl/pubs/files/ofr93-322.pdf, http://earthquake.usgs.gov/regional/asl/pubs/files/ofr93-322.pdf

  33. A. Friedrich, F. Krüger, K. Klinge, J. Seismolog. 2(1), 47 (1998). doi:10.1023/A:1009788904007

    Article  ADS  Google Scholar 

  34. E. Marchetti, M. Mazzoni, Evidence of oceanic microseism as a source of low frequency seismic signal recorded at virgo. Techical Report Virgo (2004). https://tds.ego-gw.it/ql/?c=1502. VIR-NOT-FIR-1390-261

  35. M.G. Beker et al., J. Phys.: Conf. Ser. 363(1), 012004 (2012). http://stacks.iop.org/1742-6596/363/i=1/a=012004

  36. S. Miyoki et al., Class. Quantum Gravity 23(8), S231 (2006). http://stacks.iop.org/0264-9381/23/i=8/a=S29

  37. K. Somiya, Class. Quantum Gravity 29(12), 124007 (2012). http://stacks.iop.org/0264-9381/29/i=12/a=124007

  38. M.G. Beker, Low-frequency sensitivity of next generation gravitational wave detectors. Ph.D. Thesis, Vrije Universiteit, 2013

    Google Scholar 

  39. F. Acernese et al., Astropart. Phys. 33(3), 182 (2010)

    Article  ADS  Google Scholar 

  40. S. Braccini et al., Astropart. Phys. 23(6), 557 (2005)

    Article  ADS  Google Scholar 

  41. A. Bertolini et al., Nucl. Instrum. Methods Phys. Res. 435(435), 475 (1999)

    Article  ADS  Google Scholar 

  42. A. Stochino et al., Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 580(3), 1559 (2007). doi:10.1016/j.nima.2007.06.029, http://www.sciencedirect.com/science/article/pii/S0168900207012302

  43. P.R. Saulson, Phys. Rev. D 30(4), 732 (1984)

    Article  ADS  Google Scholar 

  44. K.S. Thorne, C.J. Winstein, Phys. Rev. D 60, 082001 (1999). doi:10.1103/PhysRevD.60.082001

  45. T. Creighton, Class. Quantum Gravity 25(12), 125011 (2008). http://stacks.iop.org/0264-9381/25/i=12/a=125011

  46. M. Beccaria et al., Class. Quantum Gravity 15, 3339 (1998)

    ADS  Google Scholar 

  47. S.A. Hughes, K.S. Thorne, Phys. Rev. D 58(12), 122002 (1998). doi:10.1103/PhysRevD.58.122002, http://link.aps.org/doi/10.1103/PhysRevD.58.122002

    Google Scholar 

  48. M. Beker et al., Gen. Relativ. Gravit. 43, 623 (2011)

    Article  ADS  Google Scholar 

  49. J.C. Driggers, J. Harms, R.X. Adhikari, Phys. Rev. D 86, 102001 (2012). doi:10.1103/PhysRevD.86.102001, http://link.aps.org/doi/10.1103/PhysRevD.86.102001

  50. R. Nawrodt, S. Rowan, J. Hough, M. Punturo, F. Ricci, J.Y. Vinet, Gen. Relativ. Gravit. 43(2), 593 (2011). doi:10.1007/s10714-010-1066-5, http://dx.doi.org/10.1007/s10714-010-1066-5

  51. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. F. Piergiovanni, M. Punturo, P. Puppo, The thermal noise of the virgo+ and virgo advanced last stage suspension (the ppp effect). (2009). https://tds.ego-gw.it/ql/?c=2199. VIR-015E-09

  53. G. Gonzalez, Class. Quantum Gravity 17(21), 4409 (2000). http://stacks.iop.org/0264-9381/17/i=21/a=305

    Google Scholar 

  54. P. Amico et al., Rev. Sci. Instrum. 73(9), 3318 (2002)

    Article  ADS  Google Scholar 

  55. A.V. Cumming et al., Class. Quantum Gravity 29(3), 035003 (2012). http://stacks.iop.org/0264-9381/29/i=3/a=035003

    Google Scholar 

  56. A. Juri et al., Adv. Thin-Film Coatings Opt. Appl. III 6286(1), 628608 (2006)

    Google Scholar 

  57. G.M. Harry et al., Class. Quantum Gravity 19(5), 897 (2002)

    Article  ADS  MATH  Google Scholar 

  58. G.M. Harry et al., Class. Quantum Gravity 24(2), 405 (2007)

    Article  ADS  Google Scholar 

  59. R.E. Strakna, Phys. Rev. 123, 2020 (1961). doi:10.1103/PhysRev.123.2020, http://link.aps.org/doi/10.1103/PhysRev.123.2020

  60. Y.S. Touloukian, C.Y. Ho, in Conductivity–Nonmetallic Solids, vol. 2 (Plenum, New York, 1970)

    Google Scholar 

  61. R. Nawrodt et al., Mechanical loss in bulk materials (2013). https://tds.ego-gw.it/ql/?c=9409. ET-0002A-13

  62. M. Alshourbagy et al., Rev. Sci. Instrum. 77(4), 044502 (2006)

    Article  ADS  Google Scholar 

  63. S. Reid, G. Cagnoli, D. Crooks, J. Hough, P. Murray, S. Rowan, M. Fejer, R. Route, S. Zappe, Phys. Lett. A 351(4–5), 205 (2006)

    Article  ADS  Google Scholar 

  64. N.L. Beveridge, Characterisation of silicon-silicon hydroxide catalysis bonds for future gravitational wave detectors. Ph.D. Thesis, University of Glasgow (2012). http://theses.gla.ac.uk/id/eprint/3526

  65. R. Douglas, Sapphire bonding work (2013). Talk at the ELiTES-WP2 teleconference

    Google Scholar 

  66. F. Benabid, M. Notcutt, L. Ju, D. Blair, Phys. Lett. A 237(6), 337 (1998). doi:10.1016/S0375-9601(97)00818-9, http://www.sciencedirect.com/science/article/pii/S0375960197008189

    Google Scholar 

  67. E. Hirose, K. Watanabe, N. Mio, Sapphire for the kagra project (2011). http://gwdoc.icrr.u-tokyo.ac.jp/JGWDoc/. JGW-T1100626-v1

  68. J. Degallaix et al., Opt. Lett. 38(12), 2047 (2013). doi:10.1364/OL.38.002047, http://ol.osa.org/abstract.cfm?URI=ol-38-12-2047

  69. S. Kroker et al., Grating reflectors for future gwd (2012). https://tds.ego-gw.it/ql/?c=9328. Talk at the 4th ET general meeting

  70. F. Brückner, D. Friedrich, T. Clausnitzer, O. Burmeister, M. Britzger, E.B. Kley, K. Danzmann, A. Tünnermann, R. Schnabel, Opt. Express 17(1), 163 (2009). doi:10.1364/OE.17.000163, http://www.opticsexpress.org/abstract.cfm?URI=oe-17-1-163

    Google Scholar 

  71. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E. Kley, A. Tünnermann, R. Schnabel, Phys. Rev. Lett. 104, 163903 (2010)

    Article  ADS  Google Scholar 

  72. S. Kroker, T. Kasebier, S. Steiner, E.B. Kley, A. Tunnermann, Appl. Phys. Lett. 102(16), 161111 (2013). doi:10.1063/1.4802883, http://link.aip.org/link/?APL/102/161111/1

    Google Scholar 

  73. S. Kroke et al., Thermal noise in grating reflectors (2013). Talk at the GWADW 2013 conference

    Google Scholar 

  74. G.D. Cole, S. Groblacher, K. Gugler, S. Gigan, M. Aspelmeyer, Appl. Phys. Lett. 92(26), 261108 (2008). doi:10.1063/1.2952512, http://link.aip.org/link/?APL/92/261108/1

    Google Scholar 

  75. A.C. Lin, M. Fejer, J.S. Harris, J. Cryst. Growth 363, 258 (2013). doi:10.1016/j.jcrysgro.2012.10.055, http://www.sciencedirect.com/science/article/pii/S0022024812007701

  76. G.D. Cole et al., Tenfold reduction of brownian noise in optical interferometry (2013). http://arxiv.org/abs/1302.6489. ArXiv:1302.6489 [physics.optics]

  77. A.C. Lin et al., Prospects and progress in crystalline coatings: AlGaP (2013). Talk at the GWADW 2013 conference

    Google Scholar 

  78. S. Chelkowski, S. Hild, A. Freise, Phys. Rev. D 79(12), 122002 (2009). doi:10.1103/PhysRevD.79.122002

    Article  ADS  Google Scholar 

  79. B. Mours, E. Tournefier, J.Y. Vinet, Class. Quantum Gravity 23, 5777 (2006)

    Article  ADS  MATH  Google Scholar 

  80. L. Carbone, C. Bogan, P. Fulda, A. Freise, B. Willke, Phys. Rev. Lett. 110, 251101 (2013). doi:10.1103/PhysRevLett.110.251101, http://link.aps.org/doi/10.1103/PhysRevLett.110.251101

    Google Scholar 

  81. R.A. Day, G. Vajente, M. Kasprzack, J. Marque, Phys. Rev. D 87, 082003 (2013). doi:10.1103/PhysRevD.87.082003, http://link.aps.org/doi/10.1103/PhysRevD.87.082003

  82. G. Vajente, R.A. Day, Phys. Rev. D 87, 122005 (2013). doi:10.1103/PhysRevD.87.122005, http://link.aps.org/doi/10.1103/PhysRevD.87.122005

  83. T. Corbitt, Quantum noise and radiation pressure effects in high power optical interferometers. Ph.D. Thesis, MIT 2008

    Google Scholar 

  84. T. Corbitt, N. Mavalvala, J. Opt. B: Quantum and Semiclassical Opt. 6(8), S675 (2004). http://stacks.iop.org/1464-4266/6/i=8/a=008

  85. A. Khalaidovski, J. Steinlechner, R. Schnabel, Class. Quantum Gravity 30(16), 165001 (2013).http://stacks.iop.org/0264-1/30/i=16/a=165001

    Google Scholar 

  86. B.J. Meers, Phys. Rev. D 38, 2317 (1988)

    Article  ADS  Google Scholar 

  87. A. Buonanno, Y. Chen, N. Mavalvala, Phys. Rev. D 67(12), 122005 (2003). doi:10.1103/PhysRevD.67.122005

    Article  ADS  Google Scholar 

  88. A. Buonanno, Y. Chen, Class. Quantum Gravity 18(15), L95 (2001). http://stacks.iop.org/0264-9381/18/i=15/a=102

  89. A. Buonanno, Y. Chen, Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  90. A. Buonanno, Y. Chen, Phys. Rev. D 65, 042001 (2002)

    Article  ADS  Google Scholar 

  91. A. Buonanno, Y. Chen, Phys. Rev. D 67, 062002 (2003)

    Article  ADS  Google Scholar 

  92. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Phys. Rev. D 65(2), 022002 (2001). doi:10.1103/PhysRevD.65.022002

    Article  ADS  Google Scholar 

  93. T. Corbitt, N. Mavalvala, S. Whitcomb, Phys. Rev. D 70(2), 022002 (2004). doi:10.1103/PhysRevD.70.022002

    Article  ADS  Google Scholar 

  94. F.Y. Khalili, H. Miao, Y. Chen, Phys. Rev. D 80(4), 042006 (2009). doi:10.1103/PhysRevD.80.042006

    Article  ADS  Google Scholar 

  95. A. Buonanno, Y. Chen, Phys. Rev. D 69(10), 102004 (2004). doi:10.1103/PhysRevD.69.102004

    Article  ADS  MathSciNet  Google Scholar 

  96. H. Grote, K. Danzmann, K.L. Dooley, R. Schnabel, J. Slutsky, H. Vahlbruch, Phys. Rev. Lett. 110, 181101 (2013). doi:10.1103/PhysRevLett.110.181101, http://link.aps.org/doi/10.1103/PhysRevLett.110.181101

    Google Scholar 

  97. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Phys. Rev. Lett. 104, 251102 (2010). doi:10.1103/PhysRevLett.104.251102, http://link.aps.org/doi/10.1103/PhysRevLett.104.251102

    Google Scholar 

  98. V.B. Braginsky, S. Strigin, S. Vyatchanin, Phys. Lett. A 287, 331 (2001)

    Article  ADS  Google Scholar 

  99. L. Ju, S. Gras, C. Zhao, J. Degallaix, D. Blair, Phys. Lett. A 354, 360 (2006)

    Article  ADS  Google Scholar 

  100. L. Ju et al., Phys. Lett. A 355, 419 (2006)

    Article  ADS  Google Scholar 

  101. L. Ju et al., Class. Quantum Gravity 26, 015002 (2009)

    Article  ADS  Google Scholar 

  102. K. Yamamoto, T. Uchiyama, S. Miyoki, M. Ohashi, K. Kuroda, K. Numata, Journal of Physics: Conference Series 122(1), 012015 (2008). http://stacks.iop.org/1742-6596/122/i=1/a=012015

    Google Scholar 

  103. K. Yamamoto, Parametric instability of a cavity of Einstein Telescope (2009)

    Google Scholar 

  104. S. Hild et al., Classical and Quantum Gravity 27, 015003 (2010). http://stacks.iop.org/0264-9381/27/015003

  105. S. Hild, et al., Classical and Quantum Gravity 28(9), 094013 (2011). http://stacks.iop.org/0264-9381/28/i=9/a=094013

  106. O. Jennrich, Class. Quantum Gravity 26(15), 153001 (2009). http://stacks.iop.org/0264-9381/26/i=15/a=153001

  107. A. Freise, et al., Classical and Quantum Gravity 26(8), 085012 (2009). http://stacks.iop.org/0264-9381/26/i=8/a=085012

Download references

Acknowledgments

This work has been performed with the support of the European Commission under the Framework Programme 7 (FP7), project ELiTES (Grant Agreement 295153), http://www.et--gw.eu/descriptionelites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Punturo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Punturo, M., Lück, H., Beker, M. (2014). A Third Generation Gravitational Wave Observatory: The Einstein Telescope. In: Bassan, M. (eds) Advanced Interferometers and the Search for Gravitational Waves. Astrophysics and Space Science Library, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-319-03792-9_13

Download citation

Publish with us

Policies and ethics