Mode-Locked Laser

  • Christian OttoEmail author
Part of the Springer Theses book series (Springer Theses)


Passively mode-locked (ML) semiconductor lasers are of broad interest as sources of ultrashort picosecond and sub-picosecond optical pulses with high repetition rates.


Resonant Optical Feedback Intermediate Delay Timing Jitter Feedback Strength Solitary Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.A. Avrutin, J.H. Marsh, E.L. Portnoi, Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications. IEE Proc. Optoelectron. 147(4), 251 (2000)Google Scholar
  2. 2.
    F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.H. Duan, Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55\(\mu \) m. IEEE J. Sel. Top. Quantum Electron. 13(1), 111 (2007). issn: 1077–260X. doi: 10.1109/jstqe.2006.887154 Google Scholar
  3. 3.
    K. Lüdge, Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-VCH, Weinheim, 2012). isbn: 978-3-527-41100-9Google Scholar
  4. 4.
    M. Schell, A. Weber, E. Schöll, D. Bimberg, Fundamental limits of sub-ps pulse generation by active mode locking of semiconductor lasers: the spectral gain width and the facet reflectivities. IEEE J. Quantum Electron. 27, 1661 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    C.Y. Lin, F. Grillot, Y. Li, R. Raghunathan, L.F. Lester, Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser. Opt. Express 18(21), 21932 (2010). doi: 10.1364/oe.18.021932 ADSCrossRefGoogle Scholar
  6. 6.
    O. Solgaard, K.Y. Lau, Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers. IEEE Photonics Technol. Lett. 5(11), 1264 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G.H. Duan, G. Aubin, A. Ramdane, Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback. Appl. Phys. Lett. 95(13), 131111 (2009). doi: 10.1063/1.3238324 Google Scholar
  8. 8.
    S. Breuer, W. Elsäßer, J.G. McInerney, K. Yvind, J. Pozo, E.A.J.M. Bente, M. Yousefi, A. Villafranca, N. Vogiatzis, J. Rorison, Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity. IEEE J. Quantum Electron. 46(2), 150 (2010). issn: 0018–9197. doi: 10.1109/jqe.2009.2033255 Google Scholar
  9. 9.
    C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96(5), 051118 (2010). doi: 10.1063/1.3299714 Google Scholar
  10. 10.
    C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, J.H. Kim, C.G. Christodoulou, L.F. Lester, RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback. IET Optoelectron. 5(3), 105 (2011). doi: 10.1049/ietopt.2010.0039 Google Scholar
  11. 11.
    C.Y. Lin, F. Grillot, Y. Li, Microwave characterization and stabilization of timing jitter in a quantum dot passively mode-locked laser via external optical feedback. IEEE J. Sel. Topics Quantum Electron. 17(5), 1311 (2011). doi: 10.1109/jstqe.2011.2118745
  12. 12.
    G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3\(\mu \)m range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26(1), 014006 (2011). doi:  10.1088/0268-1242/26/1/014006 ADSCrossRefGoogle Scholar
  13. 13.
    C. Otto, K. Lüdge, E. Schöll, Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios. Phys. Stat. Sol. (b) 247(4), 829–845 (2010). doi: 10.1002/pssb.200945434
  14. 14.
    C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback. Int. J. Bif. Chaos 22(10), 1250246 (2012). doi: 10.1142/s021812741250246x Google Scholar
  15. 15.
    B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Mulet, J. Mørk, Analysis of timing jitter in external-cavity mode-locked semiconductor lasers. IEEE J. Quantum Electron. 42(3), 249 (2006). doi: 10.1109/jqe.2006.869808 Google Scholar
  17. 17.
    E.A. Avrutin, B.M. Russell, Dynamics and spectra of monolithic mode-locked laser diodes under external optical feedback. IEEE J. Quantum Electron. 45(11), 1456 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, Two-section quantum-dot mode-locked lasers under optical feedback: pulse broadening and harmonic operation. IEEE J. Quantum Electron. 48(7), 872 (2012). issn: 0018–9197. doi: 10.1109/jqe.2012.2193387
  19. 19.
    H. Haus, A theory of forced mode locking. IEEE J. Quantum Electron. 11(7), 323–330 (1975). issn: 0018–9197Google Scholar
  20. 20.
    H. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000). doi: 10.1109/2944.902165 Google Scholar
  21. 21.
    E.A. Viktorov, P. Mandel, A.G. Vladimirov, U. Bandelow, Model for mode locking of quantum dot lasers. Appl. Phys. Lett. 88, 201102 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A.G. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg, A. Pimenov, D. Rachinskii, Dynamical regimes in a monolithic passively mode-locked quantum dot laser. J. Opt. Soc. Am. B 27(10), 2102 (2010)Google Scholar
  23. 23.
    A.G. Vladimirov, M. Wolfrum, G. Fiol, D. Arsenijević, D. Bimberg, E.A. Viktorov, P. Mandel, D. Rachinskii, Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser. Proc. of SPIE 7720, 77200Y–1 (2010). doi: 10.1117/12.853826 Google Scholar
  24. 24.
    G. Fiol, D. Arsenijević, D. Bimberg, A.G. Vladimirov, M. Wolfrum, E.A. Viktorov, P. Mandel, Hybrid mode-locking in a 40 GHz monolithic quantum dot laser. Appl. Phys. Lett. 96(1), 011104 (2010). doi: 10.1063/1.3279136 ADSCrossRefGoogle Scholar
  25. 25.
    N. Rebrova, G. Huyet, D. Rachinskii, A.G. Vladimirov, Optically injected mode-locked laser. Phys. Rev. E 83(6), 066202 (2011). doi: 10.1103/physreve.83.066202 ADSCrossRefGoogle Scholar
  26. 26.
    M. Rossetti, X. Tianhong, P. Bardella, I. Montrosset, Impact of gain saturation on passive mode locking regimes in quantum dot lasers with straight and tapered waveguides. IEEE J. Quantum Electron. 47(11), 1404 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    M. Rossetti, P. Bardella, I. Montrosset, Modeling passive mode-locking in quantum dot lasers: a comparison between a finite-difference traveling-wave model and a delayed differential equation approach. IEEE J. Quantum Electron. 47(5), 569 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    T. Xu, M. Rossetti, P. Bardella, I. Montrosset, Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers. IEEE J. Quantum Electron. 48(9), 1193 (2012). issn: 0018–9197. doi: 10.1109/jqe.2012.2206372
  29. 29.
    A.G. Vladimirov, A.S. Pimenov, D. Rachinskii, Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser. IEEE J. Quantum Electron. 45(5), 462–468 (2009). doi: 10.1109/jqe.2009.2013363 Google Scholar
  30. 30.
    R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, InAs/InP quantum-dot passively mode locked lasers for 1.55\(\mu \)m applications. IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1300 (2012)Google Scholar
  31. 31.
    A.G. Vladimirov, D. Turaev, Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72(3), 033808 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    E. Schöll, Dynamic theory of picosecond optical pulse shaping by gain-switched semiconductor laser amplifiers. IEEE J. Quantum Electron. 24(2), 435–442 (1988)Google Scholar
  33. 33.
    M. Schell, E. Schöll, Time-dependent simulation of a semiconductor laser amplifier: pulse compression in a ring configuration and dynamic optical bistability. IEEE J. Quantum Electron. 26(6), 1005–1003 (1990)Google Scholar
  34. 34.
    B. Tromborg, H.E. Lassen, H. Olesen, Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra. IEEE J- Quantum Electron. 30(4), 939 (1994). doi: 10.1109/3.291365 Google Scholar
  35. 35.
    U. Bandelow, M. Radziunas, J. Sieber, M. Wolfrum, Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers. IEEE J. Quantum Electron. 37(2), 183 (2001). issn: 0018–9197. doi: 10.1109/3.903067 Google Scholar
  36. 36.
    E.U. Rafailov, M.A. Cataluna, E.A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures (WILEY-VCH, Weinheim, 2011), isbn: 978-3-527-40928-0Google Scholar
  37. 37.
    M. Yamada, A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J. Quantum Electron. 29(5), 1330–1336 (1993). doi: 10.1109/3.236146 Google Scholar
  38. 38.
    H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd edn. (World Scientific, Singapore, 1993)CrossRefGoogle Scholar
  39. 39.
    F.X. Kärtner, J.A. der Au, U. Keller, Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quantum Electron. 4(2), 159 (1998). doi: 10.1109/2944.686719 Google Scholar
  40. 40.
    M. Yousefi, D. Lenstra, Dynamical behavior of a semiconductor laser with filtered external optical feedback. IEEE J. Quantum Electron. 35(6), 970 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    A.G. Vladimirov, D. Rachinskii, M. Wolfrum, Modeling of passively modelocked semiconductor lasers, in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge. Reviews in Nonlinear Dynamics and Complexity, Chap. 8 (Wiley-VCH, Weinheim, 2011), pp. 183–213. isbn: 978-3-527-41100-9Google Scholar
  42. 42.
    C. Otto, K. Lüdge, A.G. Vladimirov, M. Wolfrum, E. Schöll, Delay induced dynamics and jitter reduction of passively mode-locked semiconductor laser subject to optical feedback. New J. Phys. 14, 113033 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, UK, 2010)CrossRefGoogle Scholar
  44. 44.
    A.G. Vladimirov, D. Turaev, G. Kozyreff, Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29(11), 1221 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    D.M. Kane, K.A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley VCH, Weinheim, 2005)Google Scholar
  46. 46.
    U. Bandelow, M. Radziunas, A.G. Vladimirov, B. Huttl, R. Kaiser, 40GHz mode locked semiconductor lasers: theory, simulation and experiments. Opt. Quant. Electron. 38, 495 (2006). doi: 10.1007/s11082-006-0045-2 CrossRefGoogle Scholar
  47. 47.
    G. Fiol, 1.3\(\mu \)m monolithic mode-locked quantum-dot semiconductor lasers. Ph.D. thesis, Technische Universitat Berlin, 2011Google Scholar
  48. 48.
    G. New, Pulse evolution in mode-locked quasi-continuous lasers. IEEE J. Quantum Electron. 10(2), 115 (1974). issn: 0018–9197Google Scholar
  49. 49.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1995)Google Scholar
  50. 50.
    T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides, Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett. 87, 243901 (2001)Google Scholar
  51. 51.
    T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides, Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. Phys. Rev. E 67, 066214 (2003)Google Scholar
  52. 52.
    S. Yanchuk, M. Wolfrum, Instabilities of stationary states in lasers with longdelay optical feedback. Report of Weierstras-Institut for Applied Analysis and Stochastics, vol. 962, pp. 1–16 (2004)Google Scholar
  53. 53.
    S. Yanchuk, M. Wolfrum, P. Hövel, E. Schöll, Control of unstable steady states by long delay feedback. Phys. Rev. E 74, 026201 (2006)Google Scholar
  54. 54.
    M. Wolfrum, S. Yanchuk, P. Hövel, E. Schöll, Complex dynamics in delaydifferential equations with large delay. Eur. Phys. J. ST 191, 91 (2010)Google Scholar
  55. 55.
    S. Yanchuk, M. Wolfrum, A multiple time scale approach to the stability of external cavity modes in the Lang-kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Syst. 9, 519 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    C. Cobeli, A. Zaharescu, The Haros-Farey sequence at two hundred years. A survey. Acta Univ. Apulensis. Math. Inform. 5, 1–38 (2003)Google Scholar
  57. 57.
    H.G. Schuster, Deterministic Chaos (VCH Verlagsgesellschaft, Weinheim, 1989)Google Scholar
  58. 58.
    E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Nonlinear Science Series, vol. 10. (Cambridge University Press, Cambridge, 2001)Google Scholar
  59. 59.
    D. Baums, W. Elsaser, E.O. Gobel, Farey tree and devil’s staircase of a modulated external-cavity semiconductor laser. Phys. Rev. Lett. 63(2), 155 (1989). doi: 10.1103/physrevlett.63.155 Google Scholar
  60. 60.
    J. Sacher, D. Baums, P. Panknin, W. Elsäßer, E.O. Gobel, Intensity instabilites of semiconductor lasers under current modulation external light injection, and delayed feedback. Phys. Rev. A 45(3), 1893–1905 (1992) doi: 10.1103/physreva.45.1893 Google Scholar
  61. 61.
    A. Panchuk, D.P. Rosin, P. Hovel, E. Schöll, Synchronization of coupled neural oscillators with heterogeneous delays. Int. J. Bif. Chaos 23, 1330039 (2013). (arXiv:1206.0789)Google Scholar
  62. 62.
    F. Grillot, C.Y. Lin, N.A. Naderi, M. Pochet, L.F. Lester, Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser. Appl. Phys. Lett. 94(15), 153503 (2009). doi: 10.1063/1.3114409 ADSCrossRefGoogle Scholar
  63. 63.
    J. Mørk, B. Tromborg, J. Mark, Chaos in semiconductor lasers with optical feedback-theory and experiment. IEEE J. Quantum Electron. 28, 93–108 (1992)Google Scholar
  64. 64.
    H.A. Haus, A. Mecozzi, Noise of mode-locked lasers. IEEE J. Quantum Electron. 29(3), 983 (1993). doi: 10.1109/3.206583 ADSCrossRefGoogle Scholar
  65. 65.
    D. Eliyahu, R.A. Salvatore, A. Yariv, Effect of noise on the power spectrum of passively mode-locked lasers. J. Opt. Soc. Am. B 14(1), 167 (1997). doi: 10.1364/josab.14.000167 ADSCrossRefGoogle Scholar
  66. 66.
    D. von der Linde, Characterization of the noise in continuously operating modelocked lasers. Appl. Phys. B 39(4), 201 (1986)ADSCrossRefMathSciNetGoogle Scholar
  67. 67.
    B. Kolner, D. Bloom, Electrooptic sampling in GaAs integrated circuits. IEEE J. Quantum Electron. 22(1), 79 (1986). issn: 0018–9197. doi: 10.1109/jqe.1986.1072877 Google Scholar
  68. 68.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 2002)Google Scholar
  69. 69.
    D.C. Lee, Analysis of jitter in phase-locked loops. IEEE Trans. Circuits Syst. II 49(11), 704 (2002). issn: 1057–7130. doi: 10.1109/tcsii.2002.807265 Google Scholar
  70. 70.
    F. Kefelian, S. O’Donoghue, M.T. Todaro, J.G. McInerney, G. Huyet, RF Linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photon. Technol. Lett. 20(16), 1405 (2008). issn: 1041–1135. doi: 10.1109/lpt.2008.926834
  71. 71.
    R. Paschotta, Noise of mode-locked lasers (Part I): numerical model. Appl. Phys. B Lasers Opt. 79, 153–162 (2004). issn: 0946–2171. doi: 10.1007/s00340-004-1547-x
  72. 72.
    R. Paschotta, Noise of mode-locked lasers (Part II): timing jitter and other fluctuations. Appl. Phys B Lasers Opt. 79(2), 163–173 (2004). issn: 0946–2171. doi: 10.1007/s00340-004-1548-9 Google Scholar
  73. 73.
    R. Paschotta, A. Schlatter, S.C. Zeller, H.R. Telle, U. Keller, Optical phase noise and carrier-envelope offset noise of mode-locked lasers. Appl. Phys. B Lasers Opt. 82, 265–273 (2006). doi: 10.1007/s00340-005-2041-9 Google Scholar
  74. 74.
    K. Jacobs, Stochastic Processes for Physicists: Understanding Noisy Systems (Cambridge University Press, Cambridge, 2010). isbn: 0521765420Google Scholar
  75. 75.
    D. Eliyahu, R.A. Salvatore, A. Yariv, Noise characterization of a pulse train generated by actively mode-locked lasers. J. Opt. Soc. Am. B 13(7), 1619 (1996). doi: 10.1364/josab.13.001619 ADSCrossRefGoogle Scholar
  76. 76.
    C. Mesaritakis, C. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, D. Syvridis, Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser. Appl. Phys. Lett. 97(6), 061114 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Domain II - Climate Impacts and VulnerabilitiesPotsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Theoritical PhysicsBerlin Institute of TechnologyBerlinGermany

Personalised recommendations