Quantum Dot Laser with External Feedback

  • Christian OttoEmail author
Part of the Springer Theses book series (Springer Theses)


One particularity of semiconductor lasers is their low tolerance to optical feedback, which can be of disadvantage for technological applications. For example, to use semiconductor lasers as transmitters in optical networks, expensive optical isolators are needed to avoid back reflections that can lead to temporal instabilities of the lasers (coherence collapse).


Hopf Bifurcation Chaotic Attractor Optical Feedback Pump Current Homoclinic Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Fischer, Y. Liu, P. Davis, Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication. Phys. Rev. A 62(1), 011801 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, W. Elsäßer, ON/OFF phase shift keying for chaos-encrypted communication using externalcavity semiconductor lasers. IEEE J. Quantum Electron. 38(9), 1162–1170 (2002). ISSN: 0018–9197. doi: 10.1109/jqe.2002.801950 Google Scholar
  3. 3.
    R. Vicente, C.R. Mirasso, I. Fischer, Simultaneous bidirectional message transmisson in a chaos-based communication scheme. In. Opt. Lett. 32(4), 403–405 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C.R. Mirasso, L. Pesquera, K.A. Shore, Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343–346 (2005). doi:  10.1038/nature04275 Google Scholar
  5. 5.
    E.A. Viktorov, P. Mandel, G. Huyet, Long-cavity quantum dot laser. Opt. Lett. 32(10), 1268–1270 (2007)Google Scholar
  6. 6.
    W. Kinzel, A. Englert, I. Kanter, On chaos synchronization and secure communication. Phil. Trans. R. Soc. A 368(1911), 379–389 (2010)Google Scholar
  7. 7.
    M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007). doi:  10.1109/jstqe.2006.885332 Google Scholar
  8. 8.
    G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22(2), 43–122 (1998). doi:  10.1016/s0079-6727(98)00008-1 Google Scholar
  9. 9.
    S. Schikora, P. Hövel, H.J. Wünsche, E. Schöll, F. Henneberger, Alloptical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett. 97, 213902 (2006). doi: 10.1103/physrevlett.97.213902 ADSCrossRefGoogle Scholar
  10. 10.
    V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007). doi: 10.1103/physreve.76.066202 ADSCrossRefGoogle Scholar
  11. 11.
    T. Dahms, P. Hövel, E. Schöll, Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E 76(5), 056201 (2007). doi: 10.1103/physreve.76.056201 ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Dahms, P. Hövel, E. Schöll, Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E 78(5), 056213 (2008). doi:  10.1103/physreve.78.056213 Google Scholar
  13. 13.
    B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H.J. Wünsche, E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to alloptical control of a semiconductor laser. Phys. Rev. E 77(6), 066207 (2008). doi: 10.1103/physreve.77.066207 ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Dahms, V. Flunkert, F. Henneberger, P. Hövel, S. Schikora, E. Schöll, H.J.Wünsche, Noninvasive optical control of complex semiconductor laser dynamics. Eur. Phys. J. ST 191, 71 (2010)Google Scholar
  15. 15.
    E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control (Wiley-VCH. Second completely revised and enlarged edition, Weinheim, 2008)zbMATHGoogle Scholar
  16. 16.
    E. Schöll, P. Hövel, V. Flunkert, M.A. Dahlem, Time-delayed feedback control: from simple models to lasers and neural systems, in Complex Timedelay Systems: Theory and Applications, ed. by F.M. Atay (Springer, Berlin, 2010), pp. 85–150Google Scholar
  17. 17.
    K. Hicke, O. D’fHuys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Mismatch and synchronization: influence of asymmetries in systems of two delaycoupled lasers. Phys. Rev. E 83, 056211 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    T. Dahms, Synchronization in delay-coupled laser networks. PhD thesis. Technische Universitat Berlin, 2011Google Scholar
  19. 19.
    T. Dahms, J. Lehnert, E. Schöll, Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86(1), 016202 (2012). doi: 10.1103/physreve.86.016202 ADSCrossRefGoogle Scholar
  20. 20.
    V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, Bubbling in delay-coupled lasers. Phys. Rev. E 79, 065201(R) (2009). doi:  10.1103/physreve.79.065201
  21. 21.
    V. Flunkert, Delay-Coupled Complex Systems. Springer Theses (Springer, Heidelberg, 2011). ISBN: 978-3-642-20249-0Google Scholar
  22. 22.
    M.C. Soriano, J. Garcia-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)Google Scholar
  23. 23.
    H. Su, L. Zhang, A.L. Gray, R. Wang, T.C. Newell, K.J. Malloy, L.F. Lester, High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003). ISSN: 1041–1135. doi:  10.1109/lpt.2003.818627 Google Scholar
  24. 24.
    G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. (b) 201(2), 345–352 (2004). doi:  10.1002/pssa.200303971 Google Scholar
  25. 25.
    D. O’Brien, S.P. Hegarty, G. Huyet, J.G. McInerney, T. Kettler, M. Lammlin, D. Bimberg, V. Ustinov, A.E. Zhukov, S.S. Mikhrin, A.R. Kovsh, Feedback sensitivity of 1.3 \(\upmu \)m InAs/GaAs quantum dot lasers. Electron. Lett. 39(25), 1819–1820 (2003)CrossRefGoogle Scholar
  26. 26.
    O. Carroll, I. O’Driscoll, S.P. Hegarty, G. Huyet, J. Houlihan, E.A. Viktorov, P. Mandel, Feedback induced instabilities in a quantum dot semiconductor laser. Opt. Express 14(22), 10831–10837 (2006). doi:  10.1364/oe.14.010831 Google Scholar
  27. 27.
    O. Carroll, S.P. Hegarty, G. Huyet, B. Corbett, Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers. Electron. Lett. 41(16), 39–40 (2005)Google Scholar
  28. 28.
    C. Otto, K. Lüdge, E. Schöll, Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios. Phys. Stat. Sol. (b) 247(4), 829–845 (2010). doi:  10.1002/pssb.200945434
  29. 29.
    C. Otto, K. Lüdge, A.G. Vladimirov, M. Wolfrum, E. Schöll, Delay induced dynamics and jitter reduction of passively mode-locked semiconductor laser subject to optical feedback. New J. Phys. 14, 113033 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)Google Scholar
  32. 32.
    D.M. Kane, K.A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley VCH, Weinheim, 2005)Google Scholar
  33. 33.
    G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclass. Opt. 7, 87–143 (1995)Google Scholar
  34. 34.
    B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Failure of the \(\alpha \)-factor in describing dynamical instabilities and chaos in quantum-dot lasers. Phys. Rev. E 86(6), 065201(R) (2012). doi:  10.1103/physreve.86.065201 ADSCrossRefGoogle Scholar
  35. 35.
    S. Melnik, G. Huyet, A.V. Uskov, The linewidth enhancement factor \(\alpha \) of quantum dot semiconductor lasers. Opt. Express 14(7), 2950–2955 (2006).Google Scholar
  36. 36.
    B. Lingnau, K.Lüdge, W.W. Chow, E. Schöll, Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser, in Semiconductor Lasers and Laser Dynamics V, Brussels, ed. by K. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik, vol. 8432. Proceedings of SPIE 53, Bellingham, WA, 2012, 84321J-1. ISBN: 9780819491244Google Scholar
  37. 37.
    B. Lingnau, W.W. Chow, E. Schöll, K. Lüdge, Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis. New J. Phys. 15, 093031 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    C. Otto, K.Lüdge, E.A. Viktorov, T. Erneux, Quantum dot laser tolerance to optical feedback, in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge, Chap. 6 (WILEY-VCH, Weinheim, 2012), pp. 141–162. ISBN: 9783527411009Google Scholar
  39. 39.
    B. Haegeman, K. Engelborghs, D. Roose, D. Pieroux, T. Erneux, Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback. Phys. Rev. E 66, 046216 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides, Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. Phys. Rev. E 67, 066214 (2003)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    K. Green, Stability near threshold in a semiconductor laser subject to optical feedback: a bifurcation analysis of the Lang–Kobayashi equations. Phys. Rev. E 79(3), 036210 (2009). doi: 10.1103/physreve.79.036210 ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    C. Otto, B. Globisch, K.Lüdge, E. Schöll, T. Erneux, Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback. Int. J. Bif. Chaos 22(10), 1250246 (2012). doi:  10.1142/s021812741250246x Google Scholar
  43. 43.
    V. Rottschäfer, B. Krauskopf, The ECM-backbone of the Lang–Kobayashi equations: a geometric picture. Int. J. Bif. Chaos 17(5), 1575–1588 (2007). doi:  10.1142/s0218127407017914 Google Scholar
  44. 44.
    B. Krauskopf, D. Lenstra (eds.) Fundamental Issues of Nonlinear Laser Dynamics, vol. 548. AIP Conference Proceedings (American Institute of Physics, Melville (New York), 2000)Google Scholar
  45. 45.
    H. Haken, Laser Theory (Springer, Berlin, 1983)Google Scholar
  46. 46.
    B. Krauskopf, G.H.M. van Tartwijk, G.R. Gray, Symmetry properties of lasers subject to optical feedback. Opt. Commun. 177(1-6), 347–353 (2000). doi:  10.1016/s0030-4018(00)00574-5 Google Scholar
  47. 47.
    A.M. Levine, G.H.M. van Tartwijk, D. Lenstra, T. Erneux, Diode lasers with optical feedback: stability of the maximum gain mode. Phys. Rev. A 52(5), R3436 (4 pages)(1995). doi:  10.1103/physreva.52.r3436 Google Scholar
  48. 48.
    M. Wolfrum, D. Turaev, Instabilities of lasers with moderately delayed optical feedback. Opt. Commun. 212(1–3), 127–138 (2002).Google Scholar
  49. 49.
    K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-Biftool. ACM Trans. Math. Softw. 28, 1–21 (2002)Google Scholar
  50. 50.
    R Szalai, KNUT: a continuation and bifurcation software for delay-differential equations (2009).
  51. 51.
    T.C. Newell, D.J. Bossert, A. Stintz, B. Fuchs, K.J. Malloy, L.F. Lester, Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photonics Technol. Lett. 11(12), 1527–1529 (1999)Google Scholar
  52. 52.
    N. Schunk, K. Petermann, Stability analysis for laser diodes with short external cavities. IEEE Photonics Technol. Lett. 1(3), 49–51 (1989). doi:  10.1109/68.87893 Google Scholar
  53. 53.
    G. Lythe, T. Erneux, A. Gavrielides, V. Kovanis, Low pump limit of the bifurcation to periodic intensities in a semiconductor laser subject to external optical feedback. Phys. Rev. A 55(6), 4443–4448 (1997). ISSN: 1050–2947Google Scholar
  54. 54.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1995)CrossRefzbMATHGoogle Scholar
  55. 55.
    B. Krauskopf, S. Wieczorek, Accumulating regions of winding periodic orbits in optically driven lasers. Phys. D 173, 97 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    T. Heil, I. Fischer, W. Elsaser, A. Gavrielides, Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett. 87, 243901 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    A. Tabaka, K. Panajotov, I. Veretennicoff, M. Sciamanna, Bifurcation study of regular pulse packages in laser diodes subject to optical feedback. Phys. Rev. E 70(3), 036211 (2004). doi: 10.1103/physreve.70.036211 ADSCrossRefGoogle Scholar
  58. 58.
    M Virte, A. Karsaklian Dal Bosco, D. Wolfersberger, M. Sciamanna, Chaos crisis and bistability of self-pulsing dynamics in a laser diode with phase-conjugate feedback. Phys. Rev. A 84(4), 043836 (2011). doi:  10.1103/physreva.84.043836 Google Scholar
  59. 59.
    J. Hizanidis, E. Scholl, Control of noise-induced spatiotemporal patterns in superlattices. Phys. Stat. Sol. (c) 5(1), 207–210 (2008). doi:  10.1002/pssc.200776522 Google Scholar
  60. 60.
    A.A. Tager, K. Petermann, High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE J. Quantum Electron. 30(7), 1553–1561 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    A.A. Tager, B.B. Elenkrig, Stability regimes and high-frequency modulation of laser diodes with short external cavity. IEEE J. Quantum Electron. 29(12), 2886–2890 (1993). doi: 10.1109/3.259402 ADSCrossRefGoogle Scholar
  62. 62.
    T. Erneux, F. Rogister, A. Gavrielides, V. Kovanis, Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback. English. Opt. Commun. 183(5–6), 467–477 (2000). ISSN: 0030–4018Google Scholar
  63. 63.
    J. Helms, K. Petermann, A simple analytic expression for the stable operation range of laser diodes with optical feedback. IEEE J. Quantum. Electron. 26(5), 833 (1990)Google Scholar
  64. 64.
    J. Mork, B. Tromborg, J. Mark, Chaos in semiconductor lasers with optical feedback-Theory and experiment. IEEE J. Quantum Electron. 28, 93–108 (1992)Google Scholar
  65. 65.
    R. Tkach, A. Chraplyvy, Regimes of feedback effects in 1.5-\(\upmu \)m distributed feedback lasers. J. Lightwave Technol. 4(11), 1655–1661 (1986)ADSCrossRefGoogle Scholar
  66. 66.
    A. Ritter, H. Haug, Theory of laser diodes with weak optical feedback. I. Small-signal analysis and side-mode spectra. J. Opt. Soc. Am. B 10(1), 130–144 (1993). doi:  10.1364/josab.10.000130 Google Scholar
  67. 67.
    U. Ernst, K. Pawelzik, T. Geisel, Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74(9), 1570–1573 (1995). doi:  10.1103/physrevlett.74.1570 Google Scholar
  68. 68.
    T. Erneux, Asymptotic methods applied to semiconductor laser models, in Proceedings of SPIE, vol. 3944, issue 1, ed. by R. Binder, P. Blood, M. Osinski (2000), pp. 588–601. doi: 10.1117/12.391466
  69. 69.
    R. Heitz, H. Born, F. Guffarth, O. Stier, A. Schliwa, A. Hoffmann, D. Bimberg, Existence of a phonon bottleneck for excitons in quantum dots. Phys. Rev. B 64, 241305(R) (2001)ADSCrossRefGoogle Scholar
  70. 70.
    D. Lenstra, Statistical-theory of the multistable external-feedback laser. Opt. Commun. 81, 209–214 (1991)Google Scholar
  71. 71.
    N. Schunk, K. Petermann, Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron. 24(7), 1242–1247 (1988)Google Scholar
  72. 72.
    M. Gioannini, G.A.P. The, I. Montrosset, Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback, in International Conference on Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08, pp. 101–102. doi:  10.1109/nusod.2008.4668262
  73. 73.
    F. Grillot, C. Wang, N. Naderi, J. Even, Modulation properties of self-injected quantum dot semiconductor diode lasers. IEEE J. Quantum Electron. PP.99, 1 (2013). doi: 10.1109/jstqe.2013.2246776 Google Scholar
  74. 74.
    F. Grillot, N.A. Naderi, M. Pochet, C.Y. Lin, L.F. Lester, Variation of the feedback sensitivity in a 1.55 \(\upmu \)m InAs/InP quantum-dash Fabry–Perot semiconductor laser. Appl. Phys. Lett. 93(19), 191108 (2008). doi:  10/1.2998397 Google Scholar
  75. 75.
    S. Azouigui, B. Dagens, F. Lelarge, J.G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Q. Zou, A. Ramdane, Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 \(\upmu \)m. IEEE J. Sel. Topics Quantum Electron. 15(3), 764–773 (2009). doi: 10.1109/jstqe.2009870 Google Scholar
  76. 76.
    G.H.M. van Tartwijk, A.M. Levine, D. Lenstra, Sisyphus effect in semiconductor lasers with optical feedback. IEEE J. Sel. Topics Quantum Electron. 1(2), 466 (1995)Google Scholar
  77. 77.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)Google Scholar
  78. 78.
    M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, Yu. M. Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantumdot lasers. Appl. Phys. Lett. 81(20), 3846–3848 (2002)Google Scholar
  79. 79.
    K. Lüdge, E. Schöll, Quantum-dot lasers. desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)Google Scholar
  80. 80.
    K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, Large signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron. 46(12), 1755–1762 (2010). doi:  10.1109/jqe.2066959 Google Scholar
  81. 81.
    K. Lüdge, E. Schöll, E.A. Viktorov, T. Erneux, Analytic approach to modulation properties of quantum dot lasers. J. Appl. Phys. 109(9), 103112 (2011). doi: 10.1063/1.3587244 ADSCrossRefGoogle Scholar
  82. 82.
    A.L. Hodgkin, The local electric changes associated with repetitive action in a medullated axon. J. Physiol. 107, 165 (1948)Google Scholar
  83. 83.
    J.D. Murray, Mathematical Biology. 2nd. Vol. 19. Biomathematics Texts (Springer, Berlin, 1993)Google Scholar
  84. 84.
    A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two dimensional liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970). doi:  10.1038/225535b0 Google Scholar
  85. 85.
    D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98(15), 153903 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, D.Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, Excitable phase slips in an injection-locked single-mode quantum-dot laser. Opt. Lett. 34(4), 440–442 (2009)Google Scholar
  87. 87.
    B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    S. Wieczorek, B. Krauskopf, D. Lenstra, Multipulse excitability in a semiconductor laser with optical injection. Phys. Rev. Lett. 88, 063901 (2002)ADSCrossRefGoogle Scholar
  89. 89.
    S. Wieczorek, B. Krauskopf, T.B. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416(1–2), 1–128 (2005)Google Scholar
  90. 90.
    H.J. Wünsche, O. Brox, M. Radziunas, F. Henneberger, Excitability of a semiconductor laser by a two-mode homoclinic bifurcation. Phys. Rev. Lett. 88(2), 023901–023904 (2001)Google Scholar
  91. 91.
    O.V. Ushakov, N. Korneyev, M. Radziunas, H.J. Wünsche, F. Henneberger, Excitability of chaotic transients in a semiconductor laser. Europhys. Lett. 79(3), 30004 (2007)Google Scholar
  92. 92.
    M. Giudici, C. Green, G. Giacomelli, U. Nespolo, J.R. Tredicce, Andronov bifurcation and excitability in semiconductor lasers with optical feedback. Phys. Rev. E 55(6), 6414–6418 (1997)Google Scholar
  93. 93.
    J.L.A. Dubbeldam, B. Krauskopf, D. Lenstra, Excitability and coherence resonance in lasers with saturable absorber. Phys. Rev. E 60(6), 6580 (1999)ADSCrossRefGoogle Scholar
  94. 94.
    J.L.A. Dubbeldam, B. Krauskopf, Self-pulsations of lasers with saturable absorber: dynamics and bifurcations. Opt. Commun. 159(4–6), 325–338 (1999). doi:  10.1016/s0030-4018(98)00568-9 Google Scholar
  95. 95.
    V.Z. Tronciu, Excitability and coherence resonance of a DFB laser with passive dispersive reflector. Moldavian J. Phys. Sci. 7, 516 (2008)Google Scholar
  96. 96.
    B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, M. Wolfrum, Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems. Opt. Commun. 215, 367 (2003)ADSCrossRefGoogle Scholar
  97. 97.
    G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)ADSCrossRefGoogle Scholar
  98. 98.
    A.S. Pikovsky, J. Kurths, Coherence Resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  99. 99.
    D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, Optical injection enables coherence resonance in quantum-dot lasers. Europhys. Lett. 103, 14002-p1–14002-p6 (2013). doi:  10.1209/0295-5075/103/14002 Google Scholar
  100. 100.
    G. Giacomelli, M. Giudici, S. Balle, J.R. Tredicce, Experimental evidence of coherence resonance in an optical system. Phys. Rev. Lett. 84, 3298 (2000)ADSCrossRefGoogle Scholar
  101. 101.
    J. Hizanidis, A.G. Balanov, A. Amann, E. Schöll, Noise-induced front motion: signature of a global bifurcation. Phys. Rev. Lett. 96, 244104 (2006)ADSCrossRefGoogle Scholar
  102. 102.
    O.V. Ushakov, H.J. Wünsche, F. Henneberger, I.A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Coherence resonance near a Hopf bifurcation. Phys. Rev. Lett. 95, 123903 (2005)ADSCrossRefGoogle Scholar
  103. 103.
    A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81, 011106 (2010). doi: 10.1103/physreve.81.011106 ADSCrossRefGoogle Scholar
  104. 104.
    A. Zakharova, A. Feoktistov, T. Vadivasova, E. Schöll, Coherence resonance and stochastic synchronization in a nonlinear circuit near a subcritical Hopf bifurcation. Eur. Phys. J. Spec. Top. 222(10), 2481–2495 (2013). doi:  10.1140/epjst/e2013-02031-x Google Scholar
  105. 105.
    N.B. Janson, A.G. Balanov, E. Schöll, Delayed feedback as a means of control of noise-induced motion. Phys. Rev. Lett. 93, 010601 (2004)ADSCrossRefGoogle Scholar
  106. 106.
    A.G. Balanov, N.B. Janson, E. Schöll, Control of noise-induced oscillations by delayed feedback. Physica D 199, 1–12 (2004). doi:  10.1016/j.physd.2004.05.008 Google Scholar
  107. 107.
    J. Hizanidis, E. Schöll, Control of coherence resonance in semiconductor superlattices. Phys. Rev. E 78, 066205 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    R. Aust, P. Hövel, J. Hizanidis, E. Schöll, Delay control of coherence resonance in type-I excitable dynamics. Eur. Phys. J. ST 187, 77–85 (2010). doi:  10.1140/epjst/e2010-01272-5 Google Scholar
  109. 109.
    W. Gerstner, W. Kistler, Spiking Neuron Models (Cambridge University Press, Cambridge, 2002)CrossRefzbMATHGoogle Scholar
  110. 110.
    S. Wieczorek, Global bifurcation analysis in laser systems, in Numerical continuation Methods for Dynamical Systems Path following and boundary value problems, Chap. 6, ed. by B. Krauskopf, H.M. Osinga, J. Galan-Vioque (Springer, 2007), Understanding Complex Systems, pp. 177–220Google Scholar
  111. 111.
    L. Olejniczak, K. Panajotov, H. Thienpont, M. Sciamanna, Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise. Phys. Rev. A 82(2), 023807 (2010). doi: 10.1103/physreva.82.023807 ADSCrossRefGoogle Scholar
  112. 112.
    S. Wieczorek, B. Krauskopf, Bifurcations of n-homoclinic orbits in optically injected lasers. Nonlinearity 18(3), 1095 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  113. 113.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). ISBN 978-3-540-64166-7CrossRefzbMATHGoogle Scholar
  114. 114.
    C. Grebogi, E. Ott, J.A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181–200 (1983)Google Scholar
  115. 115.
    J. Hizanidis, R. Aust, E. Schöll, Delay-induced multistability near a global bifurcation. Int. J. Bifur. Chaos 18(6), 1759–1765 (2008). doi:  10.1142/s0218127408021348 Google Scholar
  116. 116.
    R.L. Stratonovich, Topics in the Theory of Random Noise, vol. 1 (Gordon and Breach, New York, 1963)Google Scholar
  117. 117.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 2002)Google Scholar
  118. 118.
    J. Pomplun, A. Amann, E. Schöll, Mean field approximation of time-delayed feedback control of noise-induced oscillations in the Van der Pol system. Europhys. Lett. 71, 366 (2005). doi: 10.1209/epl/i2005-10100-9 ADSCrossRefMathSciNetGoogle Scholar
  119. 119.
    J. Pomplun, A.G. Balanov, E. Schöll, Long-term correlations in stochastic systems with extended time-delayed feedback. Phys. Rev. E 75, 040101(R) (2007)ADSCrossRefGoogle Scholar
  120. 120.
    S.A. Brandstetter, M.A. Dahlem, E. Schöll, Interplay of time-delayed feedback control and temporally correlated noise in excitable systems. Phil. Trans. R. Soc. A 368(1911), 391 (2010)Google Scholar
  121. 121.
    V. Beato, I. Sendina Nadal, I. Gerdes, H. Engel, Coherence resonance in a chemical excitable system driven by coloured noise. Phil. Trans. R. Soc. A 366, 381–395 (2008)Google Scholar
  122. 122.
    I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsäßer, E.O. Göbel, D. Lenstra, Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev. Lett. 76, 220 (1996)ADSCrossRefGoogle Scholar
  123. 123.
    D.W. Sukow, T. Heil, I. Fischer, A. Gavrielides, A. Hohl-AbiChedid, W. Elsäßer, Picosecond intensity statistics of semiconductor lasers operating in the low-frequency fluctuation regime. Phys. Rev. A 60(1), 667–673 (1999). doi:  10.1103/physreva.60.667 Google Scholar
  124. 124.
    T. Sano, Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback. Phys. Rev. A 50(3), 2719–2726 (1994). doi:  10.1103/physreva.50.2719 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Domain II - Climate Impacts and VulnerabilitiesPotsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Theoritical PhysicsBerlin Institute of TechnologyBerlinGermany

Personalised recommendations