Quantum Dot Laser Under Optical Injection

  • Christian OttoEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, the complex dynamics of QD lasers under optical injection is discussed. In the typical injection setup sketched in Fig. 3.1, the light of a laser (the master laser) is injected into a second laser (the slave laser).


Optical Injection Slave Laser SN Line Injection Strength Solitary Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)Google Scholar
  2. 2.
    L. Arnold, Random Dynamical Systems (Springer, Berlin, 2003)Google Scholar
  3. 3.
    N.A. Olsson, H. Temkin, R.A. Logan, L.F. Johnson, G.J. Dolan, J.P. Van der Ziel, J.C. Campbell, Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers. J. Lightwave Technol. 3(1), 63–67 (1985). doi: 10.1109/jlt.1985.1074146 ADSCrossRefGoogle Scholar
  4. 4.
    N. Schunk, K. Petermann, Noise analysis of injection-locked semiconductor injection lasers. IEEE J. Quantum Electron. 22(5), 642–650 (1986). doi: 10.1109/jqe.1986.1073018 ADSCrossRefGoogle Scholar
  5. 5.
    G. Yabre, H. De Waardt, H.P.A. Van den Boom, G.-D. Khoe, Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE J. Quantum Electron. 36(3), 385–393 (2000). doi: 10.1109/3.825887 ADSCrossRefGoogle Scholar
  6. 6.
    K. Iwashita, K. Nakagawa, Suppression of mode partition noise by laser diode light injection. IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). doi: 10.1109/jqe.1982.1071415 ADSCrossRefGoogle Scholar
  7. 7.
    X. Jin, S. L. Chuang, Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking. Solid-State Electron. 50.6, 1141–1149 (2006). ISSN: 0038–1101. doi: 10.1016/j.sse.2006.04.009
  8. 8.
    E. K. Lau, L. J. Wong, M. C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15.3, 618–633 (2009). ISSN: 1077–260X. doi: 10.1109/jstqe.2009779 Google Scholar
  9. 9.
    Y. K. Seo, A. Kim, J. T. Kim, W. Y. Choi. Optical generation of microwave signals using a directly modulated semiconductor laser under modulated light injection. Microw. Opt. Techn. Lett. 30.6, 369–370 (2001). ISSN: 1098–2760. doi: 10.1002/mop.1316
  10. 10.
    S.C. Chan, S.K. Hwang, J.M. Liu, Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express 15(22), 14921–14935 (2007). doi: 10.1364/oe.15.014921 ADSCrossRefGoogle Scholar
  11. 11.
    S. Wieczorek, B. Krauskopf, T.B. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416(1–2), 1–128 (2005)ADSGoogle Scholar
  12. 12.
    A. Murakami, J. Ohtsubo, Synchronization of feedback-induced chaos in semiconductor lasers by optical injection. Phys. Rev. A 65, 033826 (2002).Google Scholar
  13. 13.
    L. Yu-Jin, Z. Sheng-Hai, Q. Xing-Zhong, Chaos synchronization in injectionlocked semiconductor lasers with optical feedback. Chin. Phys. 16(2), 463 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A.B. Wang, Y.C. Wang, J.F. Wang, Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 34(8), 1144 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov, T. Erneux, Optically injected single-mode quantum dot lasers. Lecture Notes in Nanoscale Science and Technology, vol. 17, (Springer, New York, 2011), pp. 1–22. doi: 10.1007/978-1-4614-3570-9_1
  18. 18.
    D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98(15), 153903 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, D.Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, Excitable phase slips in an injection-locked single-mode quantum-dot laser. Opt. Lett. 34(4), 440–442 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    L. Olejniczak, K. Panajotov, H. Thienpont, M. Sciamanna, Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise. Phys. Rev. A 82(2), 023807 (2010). doi: 10.1103/physreva.82.023807 ADSCrossRefGoogle Scholar
  21. 21.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1991)Google Scholar
  22. 22.
    H. Su, L. Zhang, A. L. Gray, R. Wang, P. M. Varangis, L. F. Lester. Gain compression coefficient and above-threshold linewidth enhancement factor in InAs/GaAs quantum dot DFB lasers. Proc. SPIE 5722, 72 (2005)Google Scholar
  23. 23.
    N.A. Naderi, M. Pochet, F. Grillot, N.B. Terry, V. Kovanis, L.F. Lester, Modeling the injection-locked behavior of a quantum dash semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 15(3), 563 (2009)CrossRefGoogle Scholar
  24. 24.
    F. Grillot, N. A. Naderi, M. Pochet, C. Y. Lin, L. F. Lester. Variation of the feedback sensitivity in a 1.55\(\mu \)m InAs/InP quantum-dash Fabry-Perot semiconductor laser. Appl. Phys. Lett. 9319, 191108 (2008). doi: 10.1063/1.2998397 Google Scholar
  25. 25.
    F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester. Gain Compression and Above-Threshold Linewidth Enhancement Factor in1.3\(\mu \)m InAs/GaAs Quantum-Dot Lasers. IEEE J. Quantum Electron. 4410, 946–951 (2008). ISSN: 0018–9197. doi: 10.1109/jqe.2008.2003106 Google Scholar
  26. 26.
    B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Failure of the \(\alpha \)-factor in describing dynamical instabilities and chaos in quantum-dot lasers. Phys. Rev. E 86(6), 065201(R) (2012). doi:  10.1103/physreve.86.065201 ADSCrossRefGoogle Scholar
  27. 27.
    S. Melnik, G. Huyet, A.V. Uskov, The linewidth enhancement factor \(\alpha \) of quantum dot semiconductor lasers. Opt. Express 14(7), 2950–2955 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll. Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser. in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432, ed. by K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik. Proceedings of SPIE 53. (SPIE, Bellingham, 2012), pp. 84321J–1. ISBN: 9780819491244Google Scholar
  29. 29.
    B. Lingnau, W.W. Chow, E. Schöll, K. Lüdge, Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis. New J. Phys. 15, 093031 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclass. Opt. 7, 87–143 (1995)ADSGoogle Scholar
  31. 31.
    H. Haken, Licht und Materie 2, (Bibiographisches Institut, Mannheim, 1981)Google Scholar
  32. 32.
    C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, (Springer, Berlin, 2002)Google Scholar
  34. 34.
    V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007). doi: 10.1103/physreve.76.066202 ADSCrossRefGoogle Scholar
  35. 35.
    W.W. Chow S.W. Koch, Semiconductor-Laser Fundamentals, (Springer, Berlin, 1999), ISBN: 978-3-540-64166-7Google Scholar
  36. 36.
    Robert Adler, A study of locking phenomena in oscillators. Proc. IEEE 61(10), 1380–1385 (1973)CrossRefGoogle Scholar
  37. 37.
    B. Krauskopf, Bifurcation analysis of lasers with delay. in Unlocking Dynamical Diversity—Vptical Feedback Effects on Semiconductor Lasers, ed. by D.M. Kane, K.A. Shore (Wiley, 2005), pp. 147–183Google Scholar
  38. 38.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1995)Google Scholar
  39. 39.
    B. Krauskopf, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, (Springer, New York, 2007)Google Scholar
  40. 40.
    P. Glendinning, Stability, Instability and Chaos, (Cambridge University Press, Cambridge, 1994)Google Scholar
  41. 41.
    O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther, Delay Equations, (Springer, New York, 1995)Google Scholar
  42. 42.
    K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330. Department of Computer Science, K.U.Leuven, Belgium, 2001Google Scholar
  43. 43.
    K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-Biftool. ACM Trans. Math. Softw. 28, 1–21 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    B. Globisch, Bifurkationsanalyse von Quantenpunktlasern mit optischer Rückkopplung, MA thesis, Technical University, Berlin, 2011Google Scholar
  45. 45.
    J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    A. Dhooge, W. Govaerts, Y.A. Kuznetsov, Matcont: a matlab package for numerical bifurcation analysis of ODEs. ACM TOMS 29, 141 (2003).Google Scholar
  47. 47.
    S. Wieczorek, B. Krauskopf, D. Lenstra, A unifying view of bifurcations in a semiconductor laser subject to optical injection. Opt. Commun. 172(1), 279–295 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    S. Wieczorek, B. Krauskopf, Bifurcations of n-homoclinic orbits in optically injected lasers. Nonlinearity 18(3), 1095 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, (Cambridge University Press, Cambridge, 2001)Google Scholar
  50. 50.
    J. Hizanidis, E. Schöll, Control of coherence resonance in semiconductor superlattices. Phys. Rev. E 78, 066205 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    R. Aust, P. Hövel, J. Hizanidis, E. Schöll, Delay control of coherence resonance in type-I excitable dynamics. Eur. Phys. J. ST 187, 77–85 (2010). doi: 10.1140/epjst/e2010-01272-5 CrossRefGoogle Scholar
  52. 52.
    S. Wieczorek, B. Krauskopf, D. Lenstra, Multipulse excitability in a semiconductor laser with optical injection. Phys. Rev. Lett. 88, 063901 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge. Optical injection enables coherence resonance in quantum-dot lasers. Europhys. Lett. 103, 14002–p1-14002-p6 (2013). doi: 10.1209/0295-5075/103/14002
  54. 54.
    G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    S. Wieczorek, Global bifurcation analysis in laser systems. in Numerical Continuation Methods for Dynamical Systems—Path Following and Boundary Value Problems, ed. by B. Krauskopf, H. M. Osinga, J. Galan-Vioque. Understanding Complex Systems. (Springer, 2007), pp. 177–220Google Scholar
  57. 57.
    S.H. Strogatz, Nonlinear Dynamics and Chaos, (Westview Press, Cambridge, 1994)Google Scholar
  58. 58.
    J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, T. Erneux, Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Phys. Rev. Lett. 107, 104101 (2011). doi: 10.1103/physrevlett.107.104101 ADSCrossRefGoogle Scholar
  59. 59.
    N. Majer, Nonlinear gain dynamics of quantum dot semiconductor optical amplifiers, PhD thesis, 2012Google Scholar
  60. 60.
    H.G. Schuster. Deterministic Chaos, (VCH Verlagsgesellschaft, Weinheim, 1989)Google Scholar
  61. 61.
    J. Guckenheimer P. Holme, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied mathematical sciences, vol. 42, (Springer, Berlin, 1983)Google Scholar
  62. 62.
    M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, Injection-locked semiconductor laser dynamics from large to small detunings. Proc. SPIE 3625, 679–689 (1999). doi: 10.1117/12.356927 ADSCrossRefGoogle Scholar
  63. 63.
    M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, Averaged equations for injection locked semiconductor lasers. Physica D 161, 220 (2001)ADSCrossRefMathSciNetGoogle Scholar
  64. 64.
    B. Kelleher, S.P. Hegarty, G. Huyet, Modified relaxation oscillation parameters in optically injected semiconductor lasers. In. J. Opt. Soc. Am. B 29(8), 2249–2254 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    D.M. Kane, K.A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, Weinheim, 2005)Google Scholar
  66. 66.
    S. Wieczorek, T.B. Simpson, B. Krauskopf, D. Lenstra, Global quantitative predictions of complex laser dynamics. Phys. Rev. E 65(4), 045207 (2002). doi: 10.1103/physreve.65.045207 ADSCrossRefMathSciNetGoogle Scholar
  67. 67.
    T.B. Simpson, Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection. Opt. Commun. 215(1–3), 135–151 (2003). doi: 10.1016/s0030-4018(02)02192-2 ADSCrossRefGoogle Scholar
  68. 68.
    K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)CrossRefGoogle Scholar
  69. 69.
    K. Lüdge, E. Schöll, E.A. Viktorov, T. Erneux, Analytic approach to modulation properties of quantum dot lasers. In. J. Appl. Phys. 109(9), 103112 (2011). doi: 10.1063/1.3587244 ADSCrossRefGoogle Scholar
  70. 70.
    K. Lüdge, E. Schöll, Nonlinear dynamics of doped semiconductor quantum dot lasers. Eur. Phys. J. D 58(1), 167–174 (2010)CrossRefGoogle Scholar
  71. 71.
    M.T. Hill, H.J.S. Dorren, T. de Vries, X.J.M. Leijtens, J.H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, M.K. Smit, A fast low-power optical memory based on coupled micro-ring lasers. Nature 432(7014), 206–209 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    B.Li, M. Irfan Memon, G. Yuan, Z. Wang, S. Yu, G. Mezosi, M. Sorel, All-optical response of semiconductor ring laser bistable to duo optical injections. in cs and Laser Science. CLEO/QELS 2008. Conference on-Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electroni, (2008), pp. 1–2Google Scholar
  73. 73.
    D. O’Brien, S.P. Hegarty, G. Huyet, A.V. Uskov, Sensitivity of quantumdot semiconductor lasers to optical feedback. Opt. Lett. 29(10), 1072–1074 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi: 10.1103/physreva.76.023819 ADSCrossRefGoogle Scholar
  75. 75.
    C. Mayol, R. Toral, C.R. Mirasso, M. Natiello, Class-A lasers with injected signal: Bifurcation set and Lyapunov-potential function. Phys. Rev. A 66, 013808 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    E.J. Hinch, Perturbation Methods, (Cambridge University Press, Cambridge , 1995)Google Scholar
  77. 77.
    C.M. Bender S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, vol. 1, (Springer, New York, 2010)Google Scholar
  78. 78.
    S. Wieczorek, W.W. Chow, L. Chrostowski, C.J. Chang-Hasnain, Improved semiconductor-laser dynamics from induced population pulsation. IEEE J. Quantum Electron. 426, 552–562 (2006). ISSN: 0018–9197. doi: 10.1109/jqe.2006.874753 Google Scholar
  79. 79.
    A.B. Pippard, Response and Stability, (Cambridge University Press, Cambridge, 1985)Google Scholar
  80. 80.
    T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, P.M. Alsing, Perioddoubling cascades and chaos in a semiconductor laser with optical injection. Phys. Rev. A 51(5), 4181–4185 (1995). doi: 10.1103/physreva.51.4181 ADSCrossRefGoogle Scholar
  81. 81.
    A. Gavrielides, V. Kovanis, T. Erneux, Analytical stability boundaries for a semiconductor laser subject to optical injection. Opt. Commun. 136, 253–256 (1997). ISSN: 0030–4018. doi: 10.1016/s0030-4018(96)00705-5
  82. 82.
    C. Otto, K.Lüdge, E.A. Viktorov, T. Erneux, Quantum dot laser tolerance to optical feedback. in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge. (Wiley, Weinheim, 2012), pp. 141–162. ISBN: 9783527411009Google Scholar
  83. 83.
    B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Domain II - Climate Impacts and VulnerabilitiesPotsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Theoritical PhysicsBerlin Institute of TechnologyBerlinGermany

Personalised recommendations