Skip to main content

Quantum Dot Laser Under Optical Injection

  • Chapter
  • First Online:
Dynamics of Quantum Dot Lasers

Part of the book series: Springer Theses ((Springer Theses))

  • 1159 Accesses

Abstract

In this chapter, the complex dynamics of QD lasers under optical injection is discussed. In the typical injection setup sketched in Fig. 3.1, the light of a laser (the master laser) is injected into a second laser (the slave laser).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, we can directly plug the ansatz \({\mathcal {E}}\equiv \sqrt{N_{\mathrm{ph }}}e^{i(\Psi +\delta \omega t')}\) in the field Eq. (3.6).

  2. 2.

    Typically, \(N_{\mathrm{ph }}=\mathcal {O}(10^{4})\), which implies that the product of \(r_wN_{\mathrm{ph }}^{0}\) is a \(\mathcal {O}(1)\).

  3. 3.

    As a shortcut, we can directly plug the ansatz \({\mathcal {E}}\equiv \sqrt{N_{\mathrm{ph }}^{0}}Re^{i(\Psi +\Delta \omega t)}\) in the field Eq. (3.3).

  4. 4.

    Note that \(\Delta \nu _{\mathrm{inj }}\) and \(K\) are related to the dimensionless quantities \(\delta \omega \) and \(\tilde{k}\) defined in the previous section by \(\Delta \nu _{\mathrm{inj }}=\kappa \delta \omega /\pi \) and \(K=2\kappa \tau _{\mathrm{in }}\tilde{k}\), respectively.

  5. 5.

    Note that for Hopf bifurcations there exists a different definition of super- and subcritical. For the two-dimensional Hopf normal form, a supercritical Hopf bifurcation takes place when a stable limit-cycle is created that destabilized the stable fixed point, while in subcritical Hopf bifurcation, an unstable limit-cycle destabilizes the stable fixed-point. This definition can be generalized to higher dimensional systems by defining that in a supercritical Hopf bifurcation, the dimension of the unstable manifold of the fixed point is increased by two, while the limit-cycle gains a pair of complex conjugate Floquet-multipliers \(\sigma _{\pm }\) with \(\vert \sigma _{\pm }\vert <1\). In a subcritical Hopf bifurcation, the unstable dimension of the fixed point increases by two, and a complex conjugate pair of Floquet-multipliers of the limit-cycle leaves the unit-cycle. In the two dimensional center-manifold of a Hopf bifurcation, the high-dimensional then reduces to the generic two dimensional case of the Hopf normal form [38]. In this work, we call in the high dimensional case only those Hopf bifurcation supercritical, in which a stable limit cycle is created.

  6. 6.

    The following trigonometric relations are needed

    $$\begin{aligned} \cos (\arctan (\alpha ))&=\frac{1}{\sqrt{1+\alpha ^2}},&\qquad \sin (\arctan (\alpha ))&=\frac{\alpha }{\sqrt{1+\alpha ^2}},\end{aligned}$$
    (3.20a)
    $$\begin{aligned} \sin (x\pm y)=\sin (x)\cos (y)&\pm \cos (x)\sin (y),&\cos (x\pm y)=\cos (x)\cos (y)&\mp \sin (x)\sin (y). \end{aligned}$$
    (3.20b)
  7. 7.

    For the special case mentioned above, we obtain \((K^{\mathrm{ZH,2 }},\Delta ^{\mathrm{ZH,2 }})=(1.83, -1.74)\).

  8. 8.

    To see this, note that in Ref. [81] the RO frequency is given by \(\omega ^{\mathrm{RO }}=\sqrt{2\epsilon P}\), where in the notation of Sect. 2.5.1 \(\epsilon =\gamma ^{\mathrm{QW }}\), and \(P=r^{\mathrm{QW }}N_{\mathrm{ph }}^{0}\) is the pump parameter (see Eq. (2.23a)). Further, the \(\alpha \)-factor was denoted by \(b\) in Ref. [81].

  9. 9.

    To compare expression (3.157) with the one obtained in Ref. [81], note that for the QW rate equation model the RO damping is given by \(\Gamma ^{\mathrm{RO }}=\epsilon (1+2P)/2\), where \(\epsilon =\gamma ^{\mathrm{QW }}\) and \(P=r^{\mathrm{QW }}N_{\mathrm{ph }}^{0}\) is the pump parameter (see Eq. (2.23a)). Further, the \(\alpha \)-factor was denoted by \(b\) in Ref. [81].

  10. 10.

    Injection strength \(K\) and frequency detuning \(\Delta \nu _{\mathrm{inj }}\) may be expressed \(\tilde{k}\) and \(\delta \omega \) as \(K=2\kappa \tau _{\mathrm{in }}\tilde{k}\) and \(\Delta \nu _{\mathrm{inj }}=\kappa \delta \omega /\pi \).

References

  1. T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  2. L. Arnold, Random Dynamical Systems (Springer, Berlin, 2003)

    Google Scholar 

  3. N.A. Olsson, H. Temkin, R.A. Logan, L.F. Johnson, G.J. Dolan, J.P. Van der Ziel, J.C. Campbell, Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers. J. Lightwave Technol. 3(1), 63–67 (1985). doi:10.1109/jlt.1985.1074146

    Article  ADS  Google Scholar 

  4. N. Schunk, K. Petermann, Noise analysis of injection-locked semiconductor injection lasers. IEEE J. Quantum Electron. 22(5), 642–650 (1986). doi:10.1109/jqe.1986.1073018

    Article  ADS  Google Scholar 

  5. G. Yabre, H. De Waardt, H.P.A. Van den Boom, G.-D. Khoe, Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE J. Quantum Electron. 36(3), 385–393 (2000). doi:10.1109/3.825887

    Article  ADS  Google Scholar 

  6. K. Iwashita, K. Nakagawa, Suppression of mode partition noise by laser diode light injection. IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). doi:10.1109/jqe.1982.1071415

    Article  ADS  Google Scholar 

  7. X. Jin, S. L. Chuang, Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking. Solid-State Electron. 50.6, 1141–1149 (2006). ISSN: 0038–1101. doi:10.1016/j.sse.2006.04.009

  8. E. K. Lau, L. J. Wong, M. C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15.3, 618–633 (2009). ISSN: 1077–260X. doi:10.1109/jstqe.2009779

    Google Scholar 

  9. Y. K. Seo, A. Kim, J. T. Kim, W. Y. Choi. Optical generation of microwave signals using a directly modulated semiconductor laser under modulated light injection. Microw. Opt. Techn. Lett. 30.6, 369–370 (2001). ISSN: 1098–2760. doi:10.1002/mop.1316

  10. S.C. Chan, S.K. Hwang, J.M. Liu, Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express 15(22), 14921–14935 (2007). doi:10.1364/oe.15.014921

    Article  ADS  Google Scholar 

  11. S. Wieczorek, B. Krauskopf, T.B. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416(1–2), 1–128 (2005)

    ADS  Google Scholar 

  12. A. Murakami, J. Ohtsubo, Synchronization of feedback-induced chaos in semiconductor lasers by optical injection. Phys. Rev. A 65, 033826 (2002).

    Google Scholar 

  13. L. Yu-Jin, Z. Sheng-Hai, Q. Xing-Zhong, Chaos synchronization in injectionlocked semiconductor lasers with optical feedback. Chin. Phys. 16(2), 463 (2007)

    Article  ADS  Google Scholar 

  14. A.B. Wang, Y.C. Wang, J.F. Wang, Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 34(8), 1144 (2009)

    Article  ADS  Google Scholar 

  15. T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)

    Article  ADS  Google Scholar 

  16. B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)

    Article  ADS  Google Scholar 

  17. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov, T. Erneux, Optically injected single-mode quantum dot lasers. Lecture Notes in Nanoscale Science and Technology, vol. 17, (Springer, New York, 2011), pp. 1–22. doi:10.1007/978-1-4614-3570-9_1

  18. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98(15), 153903 (2007)

    Article  ADS  Google Scholar 

  19. B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, D.Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, Excitable phase slips in an injection-locked single-mode quantum-dot laser. Opt. Lett. 34(4), 440–442 (2009)

    Article  ADS  Google Scholar 

  20. L. Olejniczak, K. Panajotov, H. Thienpont, M. Sciamanna, Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise. Phys. Rev. A 82(2), 023807 (2010). doi:10.1103/physreva.82.023807

    Article  ADS  Google Scholar 

  21. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1991)

    Google Scholar 

  22. H. Su, L. Zhang, A. L. Gray, R. Wang, P. M. Varangis, L. F. Lester. Gain compression coefficient and above-threshold linewidth enhancement factor in InAs/GaAs quantum dot DFB lasers. Proc. SPIE 5722, 72 (2005)

    Google Scholar 

  23. N.A. Naderi, M. Pochet, F. Grillot, N.B. Terry, V. Kovanis, L.F. Lester, Modeling the injection-locked behavior of a quantum dash semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 15(3), 563 (2009)

    Article  Google Scholar 

  24. F. Grillot, N. A. Naderi, M. Pochet, C. Y. Lin, L. F. Lester. Variation of the feedback sensitivity in a 1.55\(\mu \)m InAs/InP quantum-dash Fabry-Perot semiconductor laser. Appl. Phys. Lett. 9319, 191108 (2008). doi:10.1063/1.2998397

    Google Scholar 

  25. F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester. Gain Compression and Above-Threshold Linewidth Enhancement Factor in1.3\(\mu \)m InAs/GaAs Quantum-Dot Lasers. IEEE J. Quantum Electron. 4410, 946–951 (2008). ISSN: 0018–9197. doi:10.1109/jqe.2008.2003106

    Google Scholar 

  26. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Failure of the \(\alpha \)-factor in describing dynamical instabilities and chaos in quantum-dot lasers. Phys. Rev. E 86(6), 065201(R) (2012). doi: 10.1103/physreve.86.065201

    Article  ADS  Google Scholar 

  27. S. Melnik, G. Huyet, A.V. Uskov, The linewidth enhancement factor \(\alpha \) of quantum dot semiconductor lasers. Opt. Express 14(7), 2950–2955 (2006)

    Article  ADS  Google Scholar 

  28. B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll. Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser. in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432, ed. by K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik. Proceedings of SPIE 53. (SPIE, Bellingham, 2012), pp. 84321J–1. ISBN: 9780819491244

    Google Scholar 

  29. B. Lingnau, W.W. Chow, E. Schöll, K. Lüdge, Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis. New J. Phys. 15, 093031 (2013)

    Article  ADS  Google Scholar 

  30. G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclass. Opt. 7, 87–143 (1995)

    ADS  Google Scholar 

  31. H. Haken, Licht und Materie 2, (Bibiographisches Institut, Mannheim, 1981)

    Google Scholar 

  32. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982)

    Article  ADS  Google Scholar 

  33. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, (Springer, Berlin, 2002)

    Google Scholar 

  34. V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007). doi:10.1103/physreve.76.066202

    Article  ADS  Google Scholar 

  35. W.W. Chow S.W. Koch, Semiconductor-Laser Fundamentals, (Springer, Berlin, 1999), ISBN: 978-3-540-64166-7

    Google Scholar 

  36. Robert Adler, A study of locking phenomena in oscillators. Proc. IEEE 61(10), 1380–1385 (1973)

    Article  Google Scholar 

  37. B. Krauskopf, Bifurcation analysis of lasers with delay. in Unlocking Dynamical Diversity—Vptical Feedback Effects on Semiconductor Lasers, ed. by D.M. Kane, K.A. Shore (Wiley, 2005), pp. 147–183

    Google Scholar 

  38. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1995)

    Google Scholar 

  39. B. Krauskopf, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, (Springer, New York, 2007)

    Google Scholar 

  40. P. Glendinning, Stability, Instability and Chaos, (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  41. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther, Delay Equations, (Springer, New York, 1995)

    Google Scholar 

  42. K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330. Department of Computer Science, K.U.Leuven, Belgium, 2001

    Google Scholar 

  43. K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-Biftool. ACM Trans. Math. Softw. 28, 1–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. B. Globisch, Bifurkationsanalyse von Quantenpunktlasern mit optischer Rückkopplung, MA thesis, Technical University, Berlin, 2011

    Google Scholar 

  45. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)

    Article  ADS  Google Scholar 

  46. A. Dhooge, W. Govaerts, Y.A. Kuznetsov, Matcont: a matlab package for numerical bifurcation analysis of ODEs. ACM TOMS 29, 141 (2003).

    Google Scholar 

  47. S. Wieczorek, B. Krauskopf, D. Lenstra, A unifying view of bifurcations in a semiconductor laser subject to optical injection. Opt. Commun. 172(1), 279–295 (1999)

    Article  ADS  Google Scholar 

  48. S. Wieczorek, B. Krauskopf, Bifurcations of n-homoclinic orbits in optically injected lasers. Nonlinearity 18(3), 1095 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  50. J. Hizanidis, E. Schöll, Control of coherence resonance in semiconductor superlattices. Phys. Rev. E 78, 066205 (2008)

    Article  ADS  Google Scholar 

  51. R. Aust, P. Hövel, J. Hizanidis, E. Schöll, Delay control of coherence resonance in type-I excitable dynamics. Eur. Phys. J. ST 187, 77–85 (2010). doi:10.1140/epjst/e2010-01272-5

    Article  Google Scholar 

  52. S. Wieczorek, B. Krauskopf, D. Lenstra, Multipulse excitability in a semiconductor laser with optical injection. Phys. Rev. Lett. 88, 063901 (2002)

    Article  ADS  Google Scholar 

  53. D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge. Optical injection enables coherence resonance in quantum-dot lasers. Europhys. Lett. 103, 14002–p1-14002-p6 (2013). doi:10.1209/0295-5075/103/14002

  54. G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)

    Article  ADS  Google Scholar 

  55. A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. S. Wieczorek, Global bifurcation analysis in laser systems. in Numerical Continuation Methods for Dynamical Systems—Path Following and Boundary Value Problems, ed. by B. Krauskopf, H. M. Osinga, J. Galan-Vioque. Understanding Complex Systems. (Springer, 2007), pp. 177–220

    Google Scholar 

  57. S.H. Strogatz, Nonlinear Dynamics and Chaos, (Westview Press, Cambridge, 1994)

    Google Scholar 

  58. J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, T. Erneux, Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Phys. Rev. Lett. 107, 104101 (2011). doi:10.1103/physrevlett.107.104101

    Article  ADS  Google Scholar 

  59. N. Majer, Nonlinear gain dynamics of quantum dot semiconductor optical amplifiers, PhD thesis, 2012

    Google Scholar 

  60. H.G. Schuster. Deterministic Chaos, (VCH Verlagsgesellschaft, Weinheim, 1989)

    Google Scholar 

  61. J. Guckenheimer P. Holme, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied mathematical sciences, vol. 42, (Springer, Berlin, 1983)

    Google Scholar 

  62. M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, Injection-locked semiconductor laser dynamics from large to small detunings. Proc. SPIE 3625, 679–689 (1999). doi:10.1117/12.356927

    Article  ADS  Google Scholar 

  63. M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, Averaged equations for injection locked semiconductor lasers. Physica D 161, 220 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  64. B. Kelleher, S.P. Hegarty, G. Huyet, Modified relaxation oscillation parameters in optically injected semiconductor lasers. In. J. Opt. Soc. Am. B 29(8), 2249–2254 (2012)

    Article  ADS  Google Scholar 

  65. D.M. Kane, K.A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, Weinheim, 2005)

    Google Scholar 

  66. S. Wieczorek, T.B. Simpson, B. Krauskopf, D. Lenstra, Global quantitative predictions of complex laser dynamics. Phys. Rev. E 65(4), 045207 (2002). doi:10.1103/physreve.65.045207

    Article  ADS  MathSciNet  Google Scholar 

  67. T.B. Simpson, Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection. Opt. Commun. 215(1–3), 135–151 (2003). doi:10.1016/s0030-4018(02)02192-2

    Article  ADS  Google Scholar 

  68. K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)

    Article  Google Scholar 

  69. K. Lüdge, E. Schöll, E.A. Viktorov, T. Erneux, Analytic approach to modulation properties of quantum dot lasers. In. J. Appl. Phys. 109(9), 103112 (2011). doi:10.1063/1.3587244

    Article  ADS  Google Scholar 

  70. K. Lüdge, E. Schöll, Nonlinear dynamics of doped semiconductor quantum dot lasers. Eur. Phys. J. D 58(1), 167–174 (2010)

    Article  Google Scholar 

  71. M.T. Hill, H.J.S. Dorren, T. de Vries, X.J.M. Leijtens, J.H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, M.K. Smit, A fast low-power optical memory based on coupled micro-ring lasers. Nature 432(7014), 206–209 (2004)

    Article  ADS  Google Scholar 

  72. B.Li, M. Irfan Memon, G. Yuan, Z. Wang, S. Yu, G. Mezosi, M. Sorel, All-optical response of semiconductor ring laser bistable to duo optical injections. in cs and Laser Science. CLEO/QELS 2008. Conference on-Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electroni, (2008), pp. 1–2

    Google Scholar 

  73. D. O’Brien, S.P. Hegarty, G. Huyet, A.V. Uskov, Sensitivity of quantumdot semiconductor lasers to optical feedback. Opt. Lett. 29(10), 1072–1074 (2004)

    Article  ADS  Google Scholar 

  74. T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi:10.1103/physreva.76.023819

    Article  ADS  Google Scholar 

  75. C. Mayol, R. Toral, C.R. Mirasso, M. Natiello, Class-A lasers with injected signal: Bifurcation set and Lyapunov-potential function. Phys. Rev. A 66, 013808 (2002)

    Article  ADS  Google Scholar 

  76. E.J. Hinch, Perturbation Methods, (Cambridge University Press, Cambridge , 1995)

    Google Scholar 

  77. C.M. Bender S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, vol. 1, (Springer, New York, 2010)

    Google Scholar 

  78. S. Wieczorek, W.W. Chow, L. Chrostowski, C.J. Chang-Hasnain, Improved semiconductor-laser dynamics from induced population pulsation. IEEE J. Quantum Electron. 426, 552–562 (2006). ISSN: 0018–9197. doi:10.1109/jqe.2006.874753

    Google Scholar 

  79. A.B. Pippard, Response and Stability, (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  80. T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, P.M. Alsing, Perioddoubling cascades and chaos in a semiconductor laser with optical injection. Phys. Rev. A 51(5), 4181–4185 (1995). doi:10.1103/physreva.51.4181

    Article  ADS  Google Scholar 

  81. A. Gavrielides, V. Kovanis, T. Erneux, Analytical stability boundaries for a semiconductor laser subject to optical injection. Opt. Commun. 136, 253–256 (1997). ISSN: 0030–4018. doi:10.1016/s0030-4018(96)00705-5

  82. C. Otto, K.Lüdge, E.A. Viktorov, T. Erneux, Quantum dot laser tolerance to optical feedback. in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge. (Wiley, Weinheim, 2012), pp. 141–162. ISBN: 9783527411009

    Google Scholar 

  83. B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Otto .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otto, C. (2014). Quantum Dot Laser Under Optical Injection. In: Dynamics of Quantum Dot Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-03786-8_3

Download citation

Publish with us

Policies and ethics