Advertisement

Solitary Quantum Dot Laser

  • Christian OttoEmail author
Chapter
  • 1k Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the model for the solitary semiconductor QD laser is introduced and its turn-on dynamics is studied.

Keywords

Carrier Reservoir Pump Current Solitary Laser Scat Tering Rate Time Scale Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)Google Scholar
  2. 2.
    E.U. Rafailov, M.A. Cataluna, E.A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures (Wiley-vch, Weinheim, 2011). ISBN: 978-3-527-40928-0CrossRefGoogle Scholar
  3. 3.
    M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, YuM Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantumdot lasers. Appl. Phys. Lett. 81(20), 3846–3848 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi: 10.1103/physreva.76.023819 ADSCrossRefGoogle Scholar
  5. 5.
    K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron 45(11), 1396–1403 (2009)CrossRefGoogle Scholar
  6. 6.
    T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, E.A. Viktorov, T. Erneux, Chapter 1: Optically injected single-mode quantum dot lasers, in Lecture Notes in Nanoscale Science and Technology, ed. by Z.M. Wang (Springer, New York, 2011)Google Scholar
  8. 8.
    E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006). doi: 10.1063/1.2346224 ADSCrossRefGoogle Scholar
  9. 9.
    E. Malić, M.J.P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Coulomb damped relaxation oscillations in semiconductor quantum dot lasers. IEEE J. Sel. Top. Quantum Electron 13(5), 1242–1248 (2007). doi: 10.119/jqstqe.2007.905148 CrossRefGoogle Scholar
  10. 10.
    K. Lüdge, M.J.P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys. Rev. B 78(3), 035316 (2008). doi: 10.1103/physrevb.78.035316 ADSCrossRefGoogle Scholar
  11. 11.
    K. Lüdge, E. Schöll, Nonlinear dynamics of doped semiconductor quantum dot lasers. Eur. Phys. J. D 58(1), 167–174 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Lüdge, Chapter 1: Nonlinear laser dynamics: From quantum dots to cryptography, in Modeling Quantum Dot based Laser Devices, ed. by K. Lüdge (Wiley-vch, Weinheim, 2012), pp. 3–34. ISBN: 9783527411009Google Scholar
  13. 13.
    K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijevic, D. Bimberg, E. Schöll, Large signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron 46(12), 1755–1762 (2010). doi: 10.1109/jqe.2066959.44 ADSCrossRefGoogle Scholar
  14. 14.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). ISBN: 978-3-540-64166-7CrossRefzbMATHGoogle Scholar
  15. 15.
    Y. Su, A. Carmele, M. Richter, K. Lüdge, E. Schöll, D. Bimberg, A. Knorr, Theory of single quantum dot lasers: Pauli-blocking enhanced anti-bunching. Semicond. Sci. Technol. 26, 014015 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    C. Gies, J. Wiersig, M. Lorke, F. Jahnke, Semiconductor model for quantumdot- based microcavity lasers. Phys. Rev. A 75(1), 013803 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a Quantum Dot Semiconductor Laser with Optical Injection. Phys. Rev. Lett. 98(15), 153903 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D. O’Brien, S.P. Hegarty, G. Huyet, A.V. Uskov, Sensitivity of quantumdot semiconductor lasers to optical feedback. Opt. Lett. 29(10), 1072–1074 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S. Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. B 201(2), 345–352 (2004). doi: 10.1002/pssa.200303971 CrossRefGoogle Scholar
  20. 20.
    W.W. Chow, S.W. Koch, Theory of semiconductor quantum-dot laser dynamics. IEEE J. Quantum Electron 41, 495–505 (2005). doi: 10.1109/jqe.2005.843948 ADSCrossRefGoogle Scholar
  21. 21.
    B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Many-body and nonequilibrium effects on relaxation oscillations in a quantum-dot microcavity laser. Appl. Phys. Lett. 97(11), 111102 (2010). doi: 10.1063/1.3488004 ADSCrossRefGoogle Scholar
  22. 22.
    B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Dynamic many-body and nonequilibrium effects in a quantum dot microcavity laser, in Semiconductor Lasers and Laser Dynamics IV, ed. by K. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik. Proceedings of SPIE 49, Vol. 7720 (SPIE, Bellingham, 2010) pp.121–150. doi: 10.1117/12.854671
  23. 23.
    B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering. Appl. Phys. Lett. 101(13), 131107 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser, in Semiconductor Lasers and Laser Dynamics V, Brussels, ed. by K. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik. Proceedings of SPIE 53, Vol. 8432 (SPIE, Bellingham, 2012), pp. 84321J–1. ISBN: 9780819491244Google Scholar
  25. 25.
    B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Many-body effects and selfcontained phase dynamics in an optically injected quantum-dot laser, Proceedings of SPIE, Vol. 8432 (2012)Google Scholar
  26. 26.
    J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, J. Martinez-Pastor, M. Lämmlin, D. Bimberg, InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers. IEEE J. Quantum Electron 45(9), 1121–1128 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    M. Wegert, N. Majer, K. Lüdge, S. Dommers-Völkel, J. Gomis-Bresco, A. Knorr, U. Woggon, E. Schöll, Nonlinear gain dynamics of quantum dot optical amplifiers. Semicond. Sci. Technol. 26, 014008 (2011). doi: 10.1088/0268–1242/26/1/014008 Google Scholar
  28. 28.
    N. Majer, K. Lüdge, E. Schöll, Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011). doi: 10.1063/1.3643048 ADSCrossRefGoogle Scholar
  30. 30.
    N. Majer, K. Lüdge, E. Schöll, Maxwell–Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers, in IEEE Proceeding of 11th International Conference on Numerical Simulation of Optical Devices (NUSOD), ed. by J. Piprek, (Rome, 2011) pp. 153–154. doi: 10.1109/nusod.2011.6041190
  31. 31.
    S. Wilkinson, B. Lingnau, J. Korn, E. Schöll, K. Lüdge, Influence of noise on the signal properties of quantum-dot semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron 19(4), 1900106 (2013). doi: 10.1109/jstqe.2012.2233464 CrossRefGoogle Scholar
  32. 32.
    J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    R. Wetzler, A. Wacker, E. Schöll, Non-local Auger effect in quantum dot devices. Semicond. Sci. Technol. 19, S43 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    R. Wetzler, A. Wacker, E. Schöll, Coulomb scattering with remote continuum states in quantum dot devices. J. Appl. Phys. 95, 7966 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    M. Kuntz, Modulated InGaAs/GaAs quantum dot lasers, PhD thesis, Technische Universität Berlin, Berlin, 2006Google Scholar
  37. 37.
    M. Lorke, T.R. Nielsen, J. Seebeck, P. Gartner, F. Jahnke, Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems. Phys. Rev. B 73, 085324 (2006). doi: 10.1103/physrevb.73.085324 ADSCrossRefGoogle Scholar
  38. 38.
    R. Wetzler, A. Wacker, E. Schöll, C.M.A. Kapteyn, R. Heitz, D. Bimberg, Capacitance-voltage characteristics of InAs/GaAs quantum dots embedded in a pn structure. Appl. Phys. Lett. 77, 1671 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    A. Rack, R. Wetzler, A. Wacker, E. Schöll, Dynamical bistability in quantumdot structures: Role of auger processes. Phys. Rev. B 66, 165429 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    H.H. Nilsson, J.Z. Zhang, I. Galbraith, Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers. Phys. Rev. B 72(20), 205331 (2005). doi: 10.1103/physrevb.72.205331 ADSCrossRefGoogle Scholar
  42. 42.
    K. Lüdge, E. Schöll, E.A. Viktorov, T. Erneux, Analytic approach to modulation properties of quantum dot lasers. J. Appl. Phys. 109(9), 103112 (2011). doi: 10.1063/1.3587244 ADSCrossRefGoogle Scholar
  43. 43.
    K. Lüdge E. Schöll, Temperature dependent two-state lasing in quantum dot lasers, in, Laser Dynamics and Nonlinear Photonics, Proceeding IEEE Conference Fifth Rio De La Plata Workshop, 6–9 December 2011, (IEEE Publishing Services, New York, 2012), pp. 1–6. doi: 10.1109/ldnp.2011.6162081
  44. 44.
    E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987)CrossRefGoogle Scholar
  45. 45.
    H. Haken, Laser Theory (Springer, New York, 1983)CrossRefGoogle Scholar
  46. 46.
    S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Cambridge, 1994)Google Scholar
  47. 47.
    V. Flunkert, Delay-Coupled Complex Systems (Springer, Heidelberg, 2011). ISBN: 978-3-642-20249-0CrossRefzbMATHGoogle Scholar
  48. 48.
    T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  49. 49.
    S. Wieczorek, B. Krauskopf, T.B. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416(1–2), 1–128 (2005)ADSGoogle Scholar
  50. 50.
    J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni, Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2(1), 173–183 (1985). doi: 10.1364/josab.2.000173 ADSCrossRefGoogle Scholar
  51. 51.
    T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)zbMATHGoogle Scholar
  52. 52.
    C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Vol. 1. (Springer, New York, 2010)Google Scholar
  53. 53.
    K. Lüdge, B. Lingnau, C. Otto, E. Schöll, Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics. Nonlinear Phenom. Complex Syst. 15(4), 350–359 (2012). ISSN: 1561–4085 (Print), 1817–2458 (On)Google Scholar
  54. 54.
    J. Mørk, B. Tromborg, J. Mark, Chaos in semiconductor lasers with optical feedback-theory and experiment. IEEE J. Quantum Electron 28, 93–108 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    C. Otto, K. Lüdge, E.A. Viktorov, T. Erneux, Chapter 6: Quantum dot laser tolerance to optical feedback, in Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-vch, Weinheim, 2012), pp. 141–162. ISBN: 9783527411009Google Scholar
  56. 56.
    G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclass. Opt. 7, 87–143 (1995)ADSGoogle Scholar
  57. 57.
    G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electronics 22(2), 43–122 (1998). doi: 10.1016/s0079-6727(98)00008-1
  58. 58.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1991)Google Scholar
  59. 59.
    L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, New York, 1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Domain II - Climate Impacts and VulnerabilitiesPotsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Theoritical PhysicsBerlin Institute of TechnologyBerlinGermany

Personalised recommendations