Skip to main content

Introduction

  • Chapter
  • First Online:
Dynamics of Quantum Dot Lasers

Part of the book series: Springer Theses ((Springer Theses))

  • 1110 Accesses

Abstract

Nowadays, semiconductor lasers and amplifiers play a key role for many technological applications as for example high bit rate optical communication [1], optical interconnects [2], and electro-optic sampling [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If an external voltage is applied, conduction band electrons and valence band holes are no longer in thermodynamic equilibrium. However, intraband carrier-scattering processes are so fast [9] that the carriers thermalize within each band. This means that each ensemble of carriers (electron and holes) can be described by a quasi-Fermi distribution, where the difference of both quasi-Fermi levels equals the external voltage times the elementary charge.

References

  1. W.H. Knox, Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000). doi:10.1109/2944.902178

    Google Scholar 

  2. G.A. Keeler, B.E. Nelson, D. Agarwal, C. Debaes, N.C. Helman, A. Bhatnagar, D. A B Miller, The benefits of ultrashort optical pulses in optically interconnected systems. IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003). doi:10.1109/jstqe.2003.813317

    Google Scholar 

  3. O. Reimann, D. Huhse, E. Droge, E.H. Bottcher, D. Bimberg, H.D. Stahlmann, Electrooptical sampling using 1.55 \(\upmu \)m self-seeded semiconductor laser with soliton pulse compression. IEEE Photon. Technol. Lett. 11(8), 1024–1026 (1999). doi:10.1109/68.775334

    Google Scholar 

  4. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991). doi:10.1126/science.1957169

    Google Scholar 

  5. G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclassical Opt. 7, 87–143 (1995)

    Google Scholar 

  6. H. Haken, Laser Light Dynamics, vol. I, 1st edn. (North-Holland, Amsterdam, 1986)

    Google Scholar 

  7. H. Haken, Laser Light Dynamics, vol. II, 1st edn. (North Holland, Amsterdam, 1986). ISBN: 978-0444860217

    Google Scholar 

  8. H. Ibach, H. Lüth, Solid-state physics: an introduction to principles of materials science, in Advanced Texts in Physics, 3rd edn. (Springer, New York, 2003). ISBN: 978-3540438700

    Google Scholar 

  9. D.J. Erskine, A.J. Taylor, C.L. Tang, Femtosecond studies of intraband relaxation in GaAs, AlGaAs, and GaAs/AlGaAs multiple quantum well structures. Appl. Phys. Lett. 45(1), 54 (1984)

    ADS  Google Scholar 

  10. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9(9), 366–368 (1962)

    Google Scholar 

  11. M.I. Nathan, W.P. Dumke, G. Burns, Jr. F.H. Dill, G. Lasher, Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1(3), 62–64 (1962). doi:10.1063/1.1777371

    Google Scholar 

  12. Jr. N. Holonyak, S.F. Bevacqua, Coherent (visible) light emission from Ga(As1.xPx) junctions. Appl. Phys. Lett. 1(4), 82–83 (1962). doi:10.1063/1.1753706

    Google Scholar 

  13. T.M. Quist, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, H.J. Zeigler, Semiconductor maser of GaAs. Appl. Phys. Lett. 1(4), 91–92 (1962). doi:10.1063/1.1753710

    Google Scholar 

  14. Z.I. Alferov, A.D. Andreev, V.I. Korolkov, E.L. Portnoi, D.N. Tretyako, Injection properties of N-AlxGa1-XAs-P-GaAs heterojunctions. Sov. Phys. Semicond.-USSR 2(7), 843 (1969)

    Google Scholar 

  15. J.J. Coleman, The development of the semiconductor laser diode after the first demonstration in 1962. Semicond. Sci. Technol. 27(9), 090207 (2012)

    Article  ADS  Google Scholar 

  16. H. Kroemer, A proposed class of hetero-junction injection lasers. Proc. IEEE 51(12), 1782–1783 (1963). doi:10.1109/proc.1963.2706

    Google Scholar 

  17. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1999)

    Google Scholar 

  18. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). ISBN: 978-3-540-64166-7

    Google Scholar 

  19. D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168 (2008)

    Article  Google Scholar 

  20. R. Dingle, C.H. Henry, Quantum Effects in Heterostructure Lasers. United States Patent No. 3982207 (1976)

    Google Scholar 

  21. Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  22. M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of threedimensional quantum-box lasers. IEEE J. Quantum Electron. 22(9), 1915–1921 (1986). doi:10.1109/jqe.1986.1073149

    Google Scholar 

  23. H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Lasing action of Ga0.67In0.33As/ GaInAsP/InP tensile-strained quantum-box laser. Electron. Lett. 30(2), 142–143 (1994). ISSN: 0013–5194

    Google Scholar 

  24. D. Bimberg, M. Grundmann, N.N. Ledentsov, S.S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V.M. Ustinov, P.S. Kop’ev, Z.I. Alferov, Selforganization processes in MBE-grown quantum dot structures. Thin Solid Films 267(1–2), 32–36 (1995). doi:10.1016/0040-6090(95)06597-0

    Google Scholar 

  25. V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999). doi:10.1103/revmodphys.71.1125

    Article  ADS  Google Scholar 

  26. V.A. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures (Springer, Berlin, 2004)

    Book  Google Scholar 

  27. V.A. Shchukin, E. Schöll, P. Kratzer, Thermodynamics and kinetics of quantum dot growth, in Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008), pp. 1–39

    Google Scholar 

  28. D. Bimberg, Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008)

    Google Scholar 

  29. T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  30. K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-VCH, Weinheim, 2012). ISBN: 978-3-527-41100-9

    Google Scholar 

  31. M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, Yu.M. Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantumdot lasers. Appl. Phys. Lett. 81(20), 3846–3848 (2002)

    Google Scholar 

  32. E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006). doi:10.1063/1.2346224

    Google Scholar 

  33. T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi:10.1103/physreva.76.023819

    Article  ADS  Google Scholar 

  34. K. Lüdge, E. Schöll, Quantum-dot lasers. desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)

    Google Scholar 

  35. K. Lüdge, Modeling quantum dot based laser devices, in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge (WILEY-VCH Weinheim, Weinheim, 2012). Chap. 1, pp. 3–34. ISBN: 9783527411009

    Google Scholar 

  36. T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)

    Article  ADS  Google Scholar 

  37. B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)

    Article  ADS  Google Scholar 

  38. B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, E.A. Viktorov, T. Erneux, Optically injected single-mode quantum dot lasers, in Lecture Notes in Nanoscale Science and Technology, vol. 13 (Springer, New York, 2011). Chap. 1, pp. 1–22. doi:10.1007/978-1-4614-3570-9_1

    Google Scholar 

  39. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)

    Google Scholar 

  40. H. Su, L. Zhang, A.L. Gray, R. Wang, T.C. Newell, K.J. Malloy, L.F. Lester, High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003). ISSN: 1041–1135. doi:10.1109/lpt.2003.818627

    Google Scholar 

  41. G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. (b) 201(2), 345–352 (2004). doi:10.1002/pssa.200303971

    Google Scholar 

  42. D. O’Brien, S.P. Hegarty, G. Huyet, J.G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, Feedback sensitivity of 1.3 \(\upmu \)m InAs/GaAs quantum dot lasers. Electron. Lett. 39(25), 1819–1820 (2003)

    Google Scholar 

  43. O. Carroll, I. O’Driscoll, S.P. Hegarty, G. Huyet, J. Houlihan, E.A. Viktorov, P. Mandel, Feedback induced instabilities in a quantum dot semiconductor laser. Opt. Express 14(22), 10831–10837 (2006). doi:10.1364/oe.14.010831

    Google Scholar 

  44. O. Carroll, S.P. Hegarty, G. Huyet, B. Corbett, Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers. Electron. Lett. 41(16), 39–40 (2005)

    Google Scholar 

  45. B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)

    Google Scholar 

  46. G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22(2), 43–122 (1998). doi:10.1016/s0079-6727(98)00008-1

    Google Scholar 

  47. N.A. Olsson, H. Temkin, Ralph A. Logan, L.F. Johnson, G.J. Dolan, J.P. Van der Ziel, J.C. Campbell, Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers. J. Lightwave Technol. 3(1), 63–67 (1985). doi:10.1109/jlt.1985.1074146

    Google Scholar 

  48. N. Schunk, K. Petermann, Noise analysis of injection-locked semiconductor injection lasers. IEEE J. Quantum Electron. 22(5), 642–650 (1986). doi:10.1109/jqe.1986.1073018

    Google Scholar 

  49. G. Yabre, H. De Waardt, H. P A Van den Boom, G-D Khoe, Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE J. Quantum Electron. 36(3), 385–393 (2000). doi:10.1109/3.825887

    Google Scholar 

  50. K. Iwashita, K. Nakagawa, Suppression of mode partition noise by laser diode light injection. IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). doi:10.1109/jqe.1982.1071415

    Google Scholar 

  51. X. Jin, S.L. Chuang, Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking. Solid-State Electron. 50(6), 1141–1149 (2006). ISSN: 0038–1101. doi:10.1016/j.sse.2006.04.009

    Google Scholar 

  52. E.K. Lau, L.J. Wong, M.C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009). ISSN: 1077–260X. 2014, doi:10.1109/jstqe.2009779

    Google Scholar 

  53. Y.K. Seo, A. Kim, J.T. Kim, W.Y. Choi, Optical generation of microwave signals using a directly modulated semiconductor laser under modulated light injection. Microw. Opt. Techn. Lett. 30(6), 369–370 (2001). ISSN: 1098–2760. doi:10.1002/mop.1316

    Google Scholar 

  54. S.C. Chan, S.K. Hwang, J.M. Liu, Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express 15(22), 14921–14935 (2007). doi:10.1364/oe.15.014921

    Google Scholar 

  55. S. Schikora, P. Hövel, H.J. Wünsche, E. Schöll, F. Henneberger, Alloptical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett. 97, 213902 (2006). doi:10.1103/physrevlett.97.213902

    Google Scholar 

  56. V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007). doi:10.1103/physreve.76.066202

    Article  ADS  Google Scholar 

  57. T. Dahms, P. Hövel, E. Schöll, Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E 76(5), 056201 (2007). doi:10.1103/physreve.76.056201

    Article  ADS  MathSciNet  Google Scholar 

  58. T. Dahms, P. Hövel, E. Schöll, Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E 78(5), 056213 (2008). doi:10.1103/physreve.78.056213

    Google Scholar 

  59. B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H.J. Wünsche, E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to alloptical control of a semiconductor laser. Phys. Rev. E 77(6), 066207 (2008). doi:10.1103/physreve.77.066207

    Article  ADS  MathSciNet  Google Scholar 

  60. T. Dahms, V. Flunkert, F. Henneberger, P. Hövel, S. Schikora, E. Schöll, H.J. Wünsche, Noninvasive optical control of complex semiconductor laser dynamics. Eur. Phys. J. ST 191, 71 (2010)

    Google Scholar 

  61. E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control, Second completely revised and enlarged edn. (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  62. E. Schöll, P. Hövel, V. Flunkert, M.A. Dahlem, Time-delayed feedback control: from simple models to lasers and neural systems, in Complex Timedelay Systems: Theory and Applications, ed. by F. M. Atay (Springer, Berlin, 2010), pp. 85–150

    Google Scholar 

  63. K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Mismatch and synchronization: Influence of asymmetries in systems of two delaycoupled lasers. Phys. Rev. E 83, 056211 (2011)

    Article  ADS  Google Scholar 

  64. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Scholl, Bubbling in delay-coupled lasers. Phys. Rev. E 79, 065201(R) (2009). doi:10.1103/physreve.79.065201

  65. V. Flunkert, Delay-Coupled Complex Systems. Springer Theses (Springer, Heidelberg, 2011). ISBN: 978-3-642-20249-0

    Google Scholar 

  66. T. Dahms, Synchronization in Delay-Coupled Laser Networks. PhD thesis. Technische Universität Berlin (2011)

    Google Scholar 

  67. T. Dahms, J. Lehnert, E. Schöll, Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86(1), 016202 (2012). doi:10.1103/physreve.86.016202

    Article  ADS  Google Scholar 

  68. Miguel C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)

    Google Scholar 

  69. L. Hou, E.A. Avrutin, M. Haji, R. Dylewicz, A.A. Bryce, J.H. Marsh, 160 GHz passively mode-locked AlGaInAs 1.55 \(\upmu \)m strained quantum-well lasers with deeply etched intracavity mirrors. IEEE J. Sel. Top. Quantum Electron. 19(4), 1100409 (2013). ISSN: 1077–260X. doi:10.1109/jstqe.2012.2230318

    Google Scholar 

  70. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative amplifiers. J. Phys. D 38, 2126–2134 (2005)

    Google Scholar 

  71. H. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000). doi:10.1109/2944.902165

    Google Scholar 

  72. A. Ducasse, C. Rulliére, B. Couillaud, Methods for the Generation of Ultrashort Laser Pulses: Mode-Locking, in Femtosecond Laser Pulses. Principles and Experiments, ed. by C. Rulliére (Springer, 2005). Chap. 2, pp. 25–56. ISBN: 0-387-01769-0

    Google Scholar 

  73. L.A. Coldren, S.W. Corzine, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. 2nd edn. Wiley series in microwave and optical enginieering (Wiley & Sons, New York, 2012)

    Google Scholar 

  74. O. Solgaard, K.Y. Lau, Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers. IEEE Photonics Technol. Lett. 5(11), 1264 (1993)

    Article  ADS  Google Scholar 

  75. J. Mulet, J. Mørk, Analysis of timing jitter in external-cavity mode-locked semiconductor lasers. IEEE J. Quantum Electron. 42(3), 249 (2006). doi:10.1109/jqe.2006.869808

    Article  ADS  Google Scholar 

  76. K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G.H. Duan, G. Aubin, A. Ramdane, Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback. Appl. Phys. Lett. 95(13), 131111 (2009). doi:10.1063/1.3238324

    Google Scholar 

  77. E.A. Avrutin, B.M. Russell, Dynamics and spectra of monolithic mode-locked laser diodes under external optical feedback. IEEE J. Quantum Electron. 45(11), 1456 (2009)

    Article  ADS  Google Scholar 

  78. S. Breuer, W. Elsäßer, J.G. McInerney, K. Yvind, J. Pozo, E.A.J.M. Bente, M. Yousefi, A. Villafranca, N. Vogiatzis, J. Rorison, Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity. IEEE J. Quantum Electron. 46(2), 150 (2010). ISSN: 0018–9197. doi:10.1109/jqe.2009.2033255

    Google Scholar 

  79. C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96(5), 051118 (2010). doi:10.1063/1.3299714

    Google Scholar 

  80. C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, J.H. Kim, C.G. Christodoulou, L.F. Lester, RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback. IET Optoelectron. 5(3), 105 (2011). doi:10.1049/ietopt.2010.0039

    Google Scholar 

  81. C.Y. Lin, F. Grillot, Y. Li, Microwave characterization and stabilization of timing jitter in a quantum dot passively mode-locked laser via external optical feedback. IEEE J. Sel. Top. Quantum Electron. 17(5), 1311 (2011). doi:10.1109/jstqe.2011.2118745

    Google Scholar 

  82. G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3\(\upmu \)m range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26(1), 014006 (2011). doi: 10.1088/0268-1242/26/1/014006

    Article  ADS  Google Scholar 

  83. A.G. Vladimirov, D. Turaev, G. Kozyreff, Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29(11), 1221 (2004)

    Article  ADS  Google Scholar 

  84. A.G. Vladimirov, D. Turaev, Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72(3), 033808 (2005)

    Article  ADS  Google Scholar 

  85. A.G. Vladimirov, D. Rachinskii, M. Wolfrum, Modeling of passively modelocked semiconductor lasers, in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge. Reviews in Nonlinear Dynamics and Complexity (Wiley-VCH, Weinheim, 2011). Chap. 8, pp. 183–213. ISBN: 978-3-527-41100-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Otto .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otto, C. (2014). Introduction. In: Dynamics of Quantum Dot Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-03786-8_1

Download citation

Publish with us

Policies and ethics