Dynamics of Quantum Dot Lasers pp 1-12 | Cite as
Introduction
Chapter
First Online:
- 985 Downloads
Abstract
Nowadays, semiconductor lasers and amplifiers play a key role for many technological applications as for example high bit rate optical communication [1], optical interconnects [2], and electro-optic sampling [3].
Keywords
Quantum Well Semiconductor Laser Saturable Absorber Optical Feedback Relative Intensity Noise
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.W.H. Knox, Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000). doi: 10.1109/2944.902178 Google Scholar
- 2.G.A. Keeler, B.E. Nelson, D. Agarwal, C. Debaes, N.C. Helman, A. Bhatnagar, D. A B Miller, The benefits of ultrashort optical pulses in optically interconnected systems. IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003). doi: 10.1109/jstqe.2003.813317 Google Scholar
- 3.O. Reimann, D. Huhse, E. Droge, E.H. Bottcher, D. Bimberg, H.D. Stahlmann, Electrooptical sampling using 1.55 \(\upmu \)m self-seeded semiconductor laser with soliton pulse compression. IEEE Photon. Technol. Lett. 11(8), 1024–1026 (1999). doi: 10.1109/68.775334 Google Scholar
- 4.D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991). doi: 10.1126/science.1957169 Google Scholar
- 5.G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclassical Opt. 7, 87–143 (1995)Google Scholar
- 6.H. Haken, Laser Light Dynamics, vol. I, 1st edn. (North-Holland, Amsterdam, 1986)Google Scholar
- 7.H. Haken, Laser Light Dynamics, vol. II, 1st edn. (North Holland, Amsterdam, 1986). ISBN: 978-0444860217Google Scholar
- 8.H. Ibach, H. Lüth, Solid-state physics: an introduction to principles of materials science, in Advanced Texts in Physics, 3rd edn. (Springer, New York, 2003). ISBN: 978-3540438700Google Scholar
- 9.D.J. Erskine, A.J. Taylor, C.L. Tang, Femtosecond studies of intraband relaxation in GaAs, AlGaAs, and GaAs/AlGaAs multiple quantum well structures. Appl. Phys. Lett. 45(1), 54 (1984)ADSGoogle Scholar
- 10.R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9(9), 366–368 (1962)Google Scholar
- 11.M.I. Nathan, W.P. Dumke, G. Burns, Jr. F.H. Dill, G. Lasher, Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1(3), 62–64 (1962). doi: 10.1063/1.1777371 Google Scholar
- 12.Jr. N. Holonyak, S.F. Bevacqua, Coherent (visible) light emission from Ga(As1.xPx) junctions. Appl. Phys. Lett. 1(4), 82–83 (1962). doi: 10.1063/1.1753706 Google Scholar
- 13.T.M. Quist, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, H.J. Zeigler, Semiconductor maser of GaAs. Appl. Phys. Lett. 1(4), 91–92 (1962). doi: 10.1063/1.1753710 Google Scholar
- 14.Z.I. Alferov, A.D. Andreev, V.I. Korolkov, E.L. Portnoi, D.N. Tretyako, Injection properties of N-AlxGa1-XAs-P-GaAs heterojunctions. Sov. Phys. Semicond.-USSR 2(7), 843 (1969)Google Scholar
- 15.J.J. Coleman, The development of the semiconductor laser diode after the first demonstration in 1962. Semicond. Sci. Technol. 27(9), 090207 (2012)ADSCrossRefGoogle Scholar
- 16.H. Kroemer, A proposed class of hetero-junction injection lasers. Proc. IEEE 51(12), 1782–1783 (1963). doi: 10.1109/proc.1963.2706 Google Scholar
- 17.D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1999)Google Scholar
- 18.W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). ISBN: 978-3-540-64166-7Google Scholar
- 19.D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168 (2008)CrossRefGoogle Scholar
- 20.R. Dingle, C.H. Henry, Quantum Effects in Heterostructure Lasers. United States Patent No. 3982207 (1976)Google Scholar
- 21.Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
- 22.M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of threedimensional quantum-box lasers. IEEE J. Quantum Electron. 22(9), 1915–1921 (1986). doi: 10.1109/jqe.1986.1073149 Google Scholar
- 23.H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Lasing action of Ga0.67In0.33As/ GaInAsP/InP tensile-strained quantum-box laser. Electron. Lett. 30(2), 142–143 (1994). ISSN: 0013–5194Google Scholar
- 24.D. Bimberg, M. Grundmann, N.N. Ledentsov, S.S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V.M. Ustinov, P.S. Kop’ev, Z.I. Alferov, Selforganization processes in MBE-grown quantum dot structures. Thin Solid Films 267(1–2), 32–36 (1995). doi: 10.1016/0040-6090(95)06597-0 Google Scholar
- 25.V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999). doi: 10.1103/revmodphys.71.1125 ADSCrossRefGoogle Scholar
- 26.V.A. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures (Springer, Berlin, 2004)CrossRefGoogle Scholar
- 27.V.A. Shchukin, E. Schöll, P. Kratzer, Thermodynamics and kinetics of quantum dot growth, in Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008), pp. 1–39Google Scholar
- 28.D. Bimberg, Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008)Google Scholar
- 29.T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
- 30.K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-VCH, Weinheim, 2012). ISBN: 978-3-527-41100-9Google Scholar
- 31.M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, Yu.M. Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantumdot lasers. Appl. Phys. Lett. 81(20), 3846–3848 (2002)Google Scholar
- 32.E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006). doi: 10.1063/1.2346224 Google Scholar
- 33.T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi: 10.1103/physreva.76.023819 ADSCrossRefGoogle Scholar
- 34.K. Lüdge, E. Schöll, Quantum-dot lasers. desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)Google Scholar
- 35.K. Lüdge, Modeling quantum dot based laser devices, in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge (WILEY-VCH Weinheim, Weinheim, 2012). Chap. 1, pp. 3–34. ISBN: 9783527411009Google Scholar
- 36.T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)ADSCrossRefGoogle Scholar
- 37.B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)ADSCrossRefGoogle Scholar
- 38.B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, E.A. Viktorov, T. Erneux, Optically injected single-mode quantum dot lasers, in Lecture Notes in Nanoscale Science and Technology, vol. 13 (Springer, New York, 2011). Chap. 1, pp. 1–22. doi: 10.1007/978-1-4614-3570-9_1 Google Scholar
- 39.J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)Google Scholar
- 40.H. Su, L. Zhang, A.L. Gray, R. Wang, T.C. Newell, K.J. Malloy, L.F. Lester, High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003). ISSN: 1041–1135. doi: 10.1109/lpt.2003.818627 Google Scholar
- 41.G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. (b) 201(2), 345–352 (2004). doi: 10.1002/pssa.200303971 Google Scholar
- 42.D. O’Brien, S.P. Hegarty, G. Huyet, J.G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, Feedback sensitivity of 1.3 \(\upmu \)m InAs/GaAs quantum dot lasers. Electron. Lett. 39(25), 1819–1820 (2003) Google Scholar
- 43.O. Carroll, I. O’Driscoll, S.P. Hegarty, G. Huyet, J. Houlihan, E.A. Viktorov, P. Mandel, Feedback induced instabilities in a quantum dot semiconductor laser. Opt. Express 14(22), 10831–10837 (2006). doi: 10.1364/oe.14.010831 Google Scholar
- 44.O. Carroll, S.P. Hegarty, G. Huyet, B. Corbett, Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers. Electron. Lett. 41(16), 39–40 (2005)Google Scholar
- 45.B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)Google Scholar
- 46.G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22(2), 43–122 (1998). doi: 10.1016/s0079-6727(98)00008-1 Google Scholar
- 47.N.A. Olsson, H. Temkin, Ralph A. Logan, L.F. Johnson, G.J. Dolan, J.P. Van der Ziel, J.C. Campbell, Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers. J. Lightwave Technol. 3(1), 63–67 (1985). doi: 10.1109/jlt.1985.1074146 Google Scholar
- 48.N. Schunk, K. Petermann, Noise analysis of injection-locked semiconductor injection lasers. IEEE J. Quantum Electron. 22(5), 642–650 (1986). doi: 10.1109/jqe.1986.1073018 Google Scholar
- 49.G. Yabre, H. De Waardt, H. P A Van den Boom, G-D Khoe, Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE J. Quantum Electron. 36(3), 385–393 (2000). doi: 10.1109/3.825887 Google Scholar
- 50.K. Iwashita, K. Nakagawa, Suppression of mode partition noise by laser diode light injection. IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). doi: 10.1109/jqe.1982.1071415 Google Scholar
- 51.X. Jin, S.L. Chuang, Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking. Solid-State Electron. 50(6), 1141–1149 (2006). ISSN: 0038–1101. doi: 10.1016/j.sse.2006.04.009 Google Scholar
- 52.E.K. Lau, L.J. Wong, M.C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009). ISSN: 1077–260X. 2014, doi: 10.1109/jstqe.2009779 Google Scholar
- 53.Y.K. Seo, A. Kim, J.T. Kim, W.Y. Choi, Optical generation of microwave signals using a directly modulated semiconductor laser under modulated light injection. Microw. Opt. Techn. Lett. 30(6), 369–370 (2001). ISSN: 1098–2760. doi: 10.1002/mop.1316 Google Scholar
- 54.S.C. Chan, S.K. Hwang, J.M. Liu, Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express 15(22), 14921–14935 (2007). doi: 10.1364/oe.15.014921 Google Scholar
- 55.S. Schikora, P. Hövel, H.J. Wünsche, E. Schöll, F. Henneberger, Alloptical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett. 97, 213902 (2006). doi: 10.1103/physrevlett.97.213902 Google Scholar
- 56.V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007). doi: 10.1103/physreve.76.066202 ADSCrossRefGoogle Scholar
- 57.T. Dahms, P. Hövel, E. Schöll, Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E 76(5), 056201 (2007). doi: 10.1103/physreve.76.056201 ADSCrossRefMathSciNetGoogle Scholar
- 58.T. Dahms, P. Hövel, E. Schöll, Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E 78(5), 056213 (2008). doi: 10.1103/physreve.78.056213 Google Scholar
- 59.B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H.J. Wünsche, E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to alloptical control of a semiconductor laser. Phys. Rev. E 77(6), 066207 (2008). doi: 10.1103/physreve.77.066207 ADSCrossRefMathSciNetGoogle Scholar
- 60.T. Dahms, V. Flunkert, F. Henneberger, P. Hövel, S. Schikora, E. Schöll, H.J. Wünsche, Noninvasive optical control of complex semiconductor laser dynamics. Eur. Phys. J. ST 191, 71 (2010)Google Scholar
- 61.E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control, Second completely revised and enlarged edn. (Wiley-VCH, Weinheim, 2008)Google Scholar
- 62.E. Schöll, P. Hövel, V. Flunkert, M.A. Dahlem, Time-delayed feedback control: from simple models to lasers and neural systems, in Complex Timedelay Systems: Theory and Applications, ed. by F. M. Atay (Springer, Berlin, 2010), pp. 85–150Google Scholar
- 63.K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Mismatch and synchronization: Influence of asymmetries in systems of two delaycoupled lasers. Phys. Rev. E 83, 056211 (2011)ADSCrossRefGoogle Scholar
- 64.V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Scholl, Bubbling in delay-coupled lasers. Phys. Rev. E 79, 065201(R) (2009). doi: 10.1103/physreve.79.065201
- 65.V. Flunkert, Delay-Coupled Complex Systems. Springer Theses (Springer, Heidelberg, 2011). ISBN: 978-3-642-20249-0Google Scholar
- 66.T. Dahms, Synchronization in Delay-Coupled Laser Networks. PhD thesis. Technische Universität Berlin (2011)Google Scholar
- 67.T. Dahms, J. Lehnert, E. Schöll, Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86(1), 016202 (2012). doi: 10.1103/physreve.86.016202 ADSCrossRefGoogle Scholar
- 68.Miguel C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)Google Scholar
- 69.L. Hou, E.A. Avrutin, M. Haji, R. Dylewicz, A.A. Bryce, J.H. Marsh, 160 GHz passively mode-locked AlGaInAs 1.55 \(\upmu \)m strained quantum-well lasers with deeply etched intracavity mirrors. IEEE J. Sel. Top. Quantum Electron. 19(4), 1100409 (2013). ISSN: 1077–260X. doi: 10.1109/jstqe.2012.2230318 Google Scholar
- 70.M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative amplifiers. J. Phys. D 38, 2126–2134 (2005)Google Scholar
- 71.H. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000). doi: 10.1109/2944.902165 Google Scholar
- 72.A. Ducasse, C. Rulliére, B. Couillaud, Methods for the Generation of Ultrashort Laser Pulses: Mode-Locking, in Femtosecond Laser Pulses. Principles and Experiments, ed. by C. Rulliére (Springer, 2005). Chap. 2, pp. 25–56. ISBN: 0-387-01769-0Google Scholar
- 73.L.A. Coldren, S.W. Corzine, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. 2nd edn. Wiley series in microwave and optical enginieering (Wiley & Sons, New York, 2012)Google Scholar
- 74.O. Solgaard, K.Y. Lau, Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers. IEEE Photonics Technol. Lett. 5(11), 1264 (1993)ADSCrossRefGoogle Scholar
- 75.J. Mulet, J. Mørk, Analysis of timing jitter in external-cavity mode-locked semiconductor lasers. IEEE J. Quantum Electron. 42(3), 249 (2006). doi: 10.1109/jqe.2006.869808 ADSCrossRefGoogle Scholar
- 76.K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G.H. Duan, G. Aubin, A. Ramdane, Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback. Appl. Phys. Lett. 95(13), 131111 (2009). doi: 10.1063/1.3238324 Google Scholar
- 77.E.A. Avrutin, B.M. Russell, Dynamics and spectra of monolithic mode-locked laser diodes under external optical feedback. IEEE J. Quantum Electron. 45(11), 1456 (2009)ADSCrossRefGoogle Scholar
- 78.S. Breuer, W. Elsäßer, J.G. McInerney, K. Yvind, J. Pozo, E.A.J.M. Bente, M. Yousefi, A. Villafranca, N. Vogiatzis, J. Rorison, Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity. IEEE J. Quantum Electron. 46(2), 150 (2010). ISSN: 0018–9197. doi: 10.1109/jqe.2009.2033255 Google Scholar
- 79.C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96(5), 051118 (2010). doi: 10.1063/1.3299714 Google Scholar
- 80.C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, J.H. Kim, C.G. Christodoulou, L.F. Lester, RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback. IET Optoelectron. 5(3), 105 (2011). doi: 10.1049/ietopt.2010.0039 Google Scholar
- 81.C.Y. Lin, F. Grillot, Y. Li, Microwave characterization and stabilization of timing jitter in a quantum dot passively mode-locked laser via external optical feedback. IEEE J. Sel. Top. Quantum Electron. 17(5), 1311 (2011). doi: 10.1109/jstqe.2011.2118745 Google Scholar
- 82.G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3\(\upmu \)m range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26(1), 014006 (2011). doi: 10.1088/0268-1242/26/1/014006 ADSCrossRefGoogle Scholar
- 83.A.G. Vladimirov, D. Turaev, G. Kozyreff, Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29(11), 1221 (2004)ADSCrossRefGoogle Scholar
- 84.A.G. Vladimirov, D. Turaev, Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72(3), 033808 (2005)ADSCrossRefGoogle Scholar
- 85.A.G. Vladimirov, D. Rachinskii, M. Wolfrum, Modeling of passively modelocked semiconductor lasers, in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge. Reviews in Nonlinear Dynamics and Complexity (Wiley-VCH, Weinheim, 2011). Chap. 8, pp. 183–213. ISBN: 978-3-527-41100-9Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014