Advertisement

Introduction

  • Christian OttoEmail author
Chapter
  • 985 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Nowadays, semiconductor lasers and amplifiers play a key role for many technological applications as for example high bit rate optical communication [1], optical interconnects [2], and electro-optic sampling [3].

Keywords

Quantum Well Semiconductor Laser Saturable Absorber Optical Feedback Relative Intensity Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.H. Knox, Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000). doi: 10.1109/2944.902178 Google Scholar
  2. 2.
    G.A. Keeler, B.E. Nelson, D. Agarwal, C. Debaes, N.C. Helman, A. Bhatnagar, D. A B Miller, The benefits of ultrashort optical pulses in optically interconnected systems. IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003). doi: 10.1109/jstqe.2003.813317 Google Scholar
  3. 3.
    O. Reimann, D. Huhse, E. Droge, E.H. Bottcher, D. Bimberg, H.D. Stahlmann, Electrooptical sampling using 1.55 \(\upmu \)m self-seeded semiconductor laser with soliton pulse compression. IEEE Photon. Technol. Lett. 11(8), 1024–1026 (1999). doi: 10.1109/68.775334 Google Scholar
  4. 4.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991). doi: 10.1126/science.1957169 Google Scholar
  5. 5.
    G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclassical Opt. 7, 87–143 (1995)Google Scholar
  6. 6.
    H. Haken, Laser Light Dynamics, vol. I, 1st edn. (North-Holland, Amsterdam, 1986)Google Scholar
  7. 7.
    H. Haken, Laser Light Dynamics, vol. II, 1st edn. (North Holland, Amsterdam, 1986). ISBN: 978-0444860217Google Scholar
  8. 8.
    H. Ibach, H. Lüth, Solid-state physics: an introduction to principles of materials science, in Advanced Texts in Physics, 3rd edn. (Springer, New York, 2003). ISBN: 978-3540438700Google Scholar
  9. 9.
    D.J. Erskine, A.J. Taylor, C.L. Tang, Femtosecond studies of intraband relaxation in GaAs, AlGaAs, and GaAs/AlGaAs multiple quantum well structures. Appl. Phys. Lett. 45(1), 54 (1984)ADSGoogle Scholar
  10. 10.
    R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9(9), 366–368 (1962)Google Scholar
  11. 11.
    M.I. Nathan, W.P. Dumke, G. Burns, Jr. F.H. Dill, G. Lasher, Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1(3), 62–64 (1962). doi: 10.1063/1.1777371 Google Scholar
  12. 12.
    Jr. N. Holonyak, S.F. Bevacqua, Coherent (visible) light emission from Ga(As1.xPx) junctions. Appl. Phys. Lett. 1(4), 82–83 (1962). doi: 10.1063/1.1753706 Google Scholar
  13. 13.
    T.M. Quist, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, H.J. Zeigler, Semiconductor maser of GaAs. Appl. Phys. Lett. 1(4), 91–92 (1962). doi: 10.1063/1.1753710 Google Scholar
  14. 14.
    Z.I. Alferov, A.D. Andreev, V.I. Korolkov, E.L. Portnoi, D.N. Tretyako, Injection properties of N-AlxGa1-XAs-P-GaAs heterojunctions. Sov. Phys. Semicond.-USSR 2(7), 843 (1969)Google Scholar
  15. 15.
    J.J. Coleman, The development of the semiconductor laser diode after the first demonstration in 1962. Semicond. Sci. Technol. 27(9), 090207 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    H. Kroemer, A proposed class of hetero-junction injection lasers. Proc. IEEE 51(12), 1782–1783 (1963). doi: 10.1109/proc.1963.2706 Google Scholar
  17. 17.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1999)Google Scholar
  18. 18.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). ISBN: 978-3-540-64166-7Google Scholar
  19. 19.
    D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Dingle, C.H. Henry, Quantum Effects in Heterostructure Lasers. United States Patent No. 3982207 (1976)Google Scholar
  21. 21.
    Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of threedimensional quantum-box lasers. IEEE J. Quantum Electron. 22(9), 1915–1921 (1986). doi: 10.1109/jqe.1986.1073149 Google Scholar
  23. 23.
    H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Lasing action of Ga0.67In0.33As/ GaInAsP/InP tensile-strained quantum-box laser. Electron. Lett. 30(2), 142–143 (1994). ISSN: 0013–5194Google Scholar
  24. 24.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, S.S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V.M. Ustinov, P.S. Kop’ev, Z.I. Alferov, Selforganization processes in MBE-grown quantum dot structures. Thin Solid Films 267(1–2), 32–36 (1995). doi: 10.1016/0040-6090(95)06597-0 Google Scholar
  25. 25.
    V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999). doi: 10.1103/revmodphys.71.1125 ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures (Springer, Berlin, 2004)CrossRefGoogle Scholar
  27. 27.
    V.A. Shchukin, E. Schöll, P. Kratzer, Thermodynamics and kinetics of quantum dot growth, in Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008), pp. 1–39Google Scholar
  28. 28.
    D. Bimberg, Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008)Google Scholar
  29. 29.
    T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  30. 30.
    K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-VCH, Weinheim, 2012). ISBN: 978-3-527-41100-9Google Scholar
  31. 31.
    M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, Yu.M. Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantumdot lasers. Appl. Phys. Lett. 81(20), 3846–3848 (2002)Google Scholar
  32. 32.
    E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006). doi: 10.1063/1.2346224 Google Scholar
  33. 33.
    T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi: 10.1103/physreva.76.023819 ADSCrossRefGoogle Scholar
  34. 34.
    K. Lüdge, E. Schöll, Quantum-dot lasers. desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)Google Scholar
  35. 35.
    K. Lüdge, Modeling quantum dot based laser devices, in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge (WILEY-VCH Weinheim, Weinheim, 2012). Chap. 1, pp. 3–34. ISBN: 9783527411009Google Scholar
  36. 36.
    T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    B. Kelleher, C. Bonatto, G. Huyet, S.P. Hegarty, Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, E.A. Viktorov, T. Erneux, Optically injected single-mode quantum dot lasers, in Lecture Notes in Nanoscale Science and Technology, vol. 13 (Springer, New York, 2011). Chap. 1, pp. 1–22. doi: 10.1007/978-1-4614-3570-9_1 Google Scholar
  39. 39.
    J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)Google Scholar
  40. 40.
    H. Su, L. Zhang, A.L. Gray, R. Wang, T.C. Newell, K.J. Malloy, L.F. Lester, High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003). ISSN: 1041–1135. doi: 10.1109/lpt.2003.818627 Google Scholar
  41. 41.
    G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. (b) 201(2), 345–352 (2004). doi: 10.1002/pssa.200303971 Google Scholar
  42. 42.
    D. O’Brien, S.P. Hegarty, G. Huyet, J.G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A.E. Zhukov, S.S Mikhrin, A.R. Kovsh, Feedback sensitivity of 1.3 \(\upmu \)m InAs/GaAs quantum dot lasers. Electron. Lett. 39(25), 1819–1820 (2003) Google Scholar
  43. 43.
    O. Carroll, I. O’Driscoll, S.P. Hegarty, G. Huyet, J. Houlihan, E.A. Viktorov, P. Mandel, Feedback induced instabilities in a quantum dot semiconductor laser. Opt. Express 14(22), 10831–10837 (2006). doi: 10.1364/oe.14.010831 Google Scholar
  44. 44.
    O. Carroll, S.P. Hegarty, G. Huyet, B. Corbett, Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers. Electron. Lett. 41(16), 39–40 (2005)Google Scholar
  45. 45.
    B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)Google Scholar
  46. 46.
    G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22(2), 43–122 (1998). doi: 10.1016/s0079-6727(98)00008-1 Google Scholar
  47. 47.
    N.A. Olsson, H. Temkin, Ralph A. Logan, L.F. Johnson, G.J. Dolan, J.P. Van der Ziel, J.C. Campbell, Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers. J. Lightwave Technol. 3(1), 63–67 (1985). doi: 10.1109/jlt.1985.1074146 Google Scholar
  48. 48.
    N. Schunk, K. Petermann, Noise analysis of injection-locked semiconductor injection lasers. IEEE J. Quantum Electron. 22(5), 642–650 (1986). doi: 10.1109/jqe.1986.1073018 Google Scholar
  49. 49.
    G. Yabre, H. De Waardt, H. P A Van den Boom, G-D Khoe, Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE J. Quantum Electron. 36(3), 385–393 (2000). doi: 10.1109/3.825887 Google Scholar
  50. 50.
    K. Iwashita, K. Nakagawa, Suppression of mode partition noise by laser diode light injection. IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). doi: 10.1109/jqe.1982.1071415 Google Scholar
  51. 51.
    X. Jin, S.L. Chuang, Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking. Solid-State Electron. 50(6), 1141–1149 (2006). ISSN: 0038–1101. doi: 10.1016/j.sse.2006.04.009 Google Scholar
  52. 52.
    E.K. Lau, L.J. Wong, M.C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009). ISSN: 1077–260X. 2014, doi: 10.1109/jstqe.2009779 Google Scholar
  53. 53.
    Y.K. Seo, A. Kim, J.T. Kim, W.Y. Choi, Optical generation of microwave signals using a directly modulated semiconductor laser under modulated light injection. Microw. Opt. Techn. Lett. 30(6), 369–370 (2001). ISSN: 1098–2760. doi: 10.1002/mop.1316 Google Scholar
  54. 54.
    S.C. Chan, S.K. Hwang, J.M. Liu, Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express 15(22), 14921–14935 (2007). doi: 10.1364/oe.15.014921 Google Scholar
  55. 55.
    S. Schikora, P. Hövel, H.J. Wünsche, E. Schöll, F. Henneberger, Alloptical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett. 97, 213902 (2006). doi: 10.1103/physrevlett.97.213902 Google Scholar
  56. 56.
    V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007). doi: 10.1103/physreve.76.066202 ADSCrossRefGoogle Scholar
  57. 57.
    T. Dahms, P. Hövel, E. Schöll, Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E 76(5), 056201 (2007). doi: 10.1103/physreve.76.056201 ADSCrossRefMathSciNetGoogle Scholar
  58. 58.
    T. Dahms, P. Hövel, E. Schöll, Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E 78(5), 056213 (2008). doi: 10.1103/physreve.78.056213 Google Scholar
  59. 59.
    B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H.J. Wünsche, E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to alloptical control of a semiconductor laser. Phys. Rev. E 77(6), 066207 (2008). doi: 10.1103/physreve.77.066207 ADSCrossRefMathSciNetGoogle Scholar
  60. 60.
    T. Dahms, V. Flunkert, F. Henneberger, P. Hövel, S. Schikora, E. Schöll, H.J. Wünsche, Noninvasive optical control of complex semiconductor laser dynamics. Eur. Phys. J. ST 191, 71 (2010)Google Scholar
  61. 61.
    E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control, Second completely revised and enlarged edn. (Wiley-VCH, Weinheim, 2008)Google Scholar
  62. 62.
    E. Schöll, P. Hövel, V. Flunkert, M.A. Dahlem, Time-delayed feedback control: from simple models to lasers and neural systems, in Complex Timedelay Systems: Theory and Applications, ed. by F. M. Atay (Springer, Berlin, 2010), pp. 85–150Google Scholar
  63. 63.
    K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Mismatch and synchronization: Influence of asymmetries in systems of two delaycoupled lasers. Phys. Rev. E 83, 056211 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Scholl, Bubbling in delay-coupled lasers. Phys. Rev. E 79, 065201(R) (2009). doi: 10.1103/physreve.79.065201
  65. 65.
    V. Flunkert, Delay-Coupled Complex Systems. Springer Theses (Springer, Heidelberg, 2011). ISBN: 978-3-642-20249-0Google Scholar
  66. 66.
    T. Dahms, Synchronization in Delay-Coupled Laser Networks. PhD thesis. Technische Universität Berlin (2011)Google Scholar
  67. 67.
    T. Dahms, J. Lehnert, E. Schöll, Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86(1), 016202 (2012). doi: 10.1103/physreve.86.016202 ADSCrossRefGoogle Scholar
  68. 68.
    Miguel C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)Google Scholar
  69. 69.
    L. Hou, E.A. Avrutin, M. Haji, R. Dylewicz, A.A. Bryce, J.H. Marsh, 160 GHz passively mode-locked AlGaInAs 1.55 \(\upmu \)m strained quantum-well lasers with deeply etched intracavity mirrors. IEEE J. Sel. Top. Quantum Electron. 19(4), 1100409 (2013). ISSN: 1077–260X. doi: 10.1109/jstqe.2012.2230318 Google Scholar
  70. 70.
    M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative amplifiers. J. Phys. D 38, 2126–2134 (2005)Google Scholar
  71. 71.
    H. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000). doi: 10.1109/2944.902165 Google Scholar
  72. 72.
    A. Ducasse, C. Rulliére, B. Couillaud, Methods for the Generation of Ultrashort Laser Pulses: Mode-Locking, in Femtosecond Laser Pulses. Principles and Experiments, ed. by C. Rulliére (Springer, 2005). Chap. 2, pp. 25–56. ISBN: 0-387-01769-0Google Scholar
  73. 73.
    L.A. Coldren, S.W. Corzine, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. 2nd edn. Wiley series in microwave and optical enginieering (Wiley & Sons, New York, 2012)Google Scholar
  74. 74.
    O. Solgaard, K.Y. Lau, Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers. IEEE Photonics Technol. Lett. 5(11), 1264 (1993)ADSCrossRefGoogle Scholar
  75. 75.
    J. Mulet, J. Mørk, Analysis of timing jitter in external-cavity mode-locked semiconductor lasers. IEEE J. Quantum Electron. 42(3), 249 (2006). doi: 10.1109/jqe.2006.869808 ADSCrossRefGoogle Scholar
  76. 76.
    K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G.H. Duan, G. Aubin, A. Ramdane, Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback. Appl. Phys. Lett. 95(13), 131111 (2009). doi: 10.1063/1.3238324 Google Scholar
  77. 77.
    E.A. Avrutin, B.M. Russell, Dynamics and spectra of monolithic mode-locked laser diodes under external optical feedback. IEEE J. Quantum Electron. 45(11), 1456 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    S. Breuer, W. Elsäßer, J.G. McInerney, K. Yvind, J. Pozo, E.A.J.M. Bente, M. Yousefi, A. Villafranca, N. Vogiatzis, J. Rorison, Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity. IEEE J. Quantum Electron. 46(2), 150 (2010). ISSN: 0018–9197. doi: 10.1109/jqe.2009.2033255 Google Scholar
  79. 79.
    C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96(5), 051118 (2010). doi: 10.1063/1.3299714 Google Scholar
  80. 80.
    C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, J.H. Kim, C.G. Christodoulou, L.F. Lester, RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback. IET Optoelectron. 5(3), 105 (2011). doi: 10.1049/ietopt.2010.0039 Google Scholar
  81. 81.
    C.Y. Lin, F. Grillot, Y. Li, Microwave characterization and stabilization of timing jitter in a quantum dot passively mode-locked laser via external optical feedback. IEEE J. Sel. Top. Quantum Electron. 17(5), 1311 (2011). doi: 10.1109/jstqe.2011.2118745 Google Scholar
  82. 82.
    G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3\(\upmu \)m range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26(1), 014006 (2011). doi:  10.1088/0268-1242/26/1/014006 ADSCrossRefGoogle Scholar
  83. 83.
    A.G. Vladimirov, D. Turaev, G. Kozyreff, Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29(11), 1221 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    A.G. Vladimirov, D. Turaev, Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72(3), 033808 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    A.G. Vladimirov, D. Rachinskii, M. Wolfrum, Modeling of passively modelocked semiconductor lasers, in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, ed. by K. Lüdge. Reviews in Nonlinear Dynamics and Complexity (Wiley-VCH, Weinheim, 2011). Chap. 8, pp. 183–213. ISBN: 978-3-527-41100-9Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Domain II - Climate Impacts and VulnerabilitiesPotsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Theoritical PhysicsBerlin Institute of TechnologyBerlinGermany

Personalised recommendations