Skip to main content

Disclosing Barriers: A Generalization of the Canonical Partition Based on Lovász’s Formulation

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

Given a graph, a barrier is a set of vertices determined by the Berge formula—the min-max theorem characterizing the size of maximum matchings. The notion of barriers plays important roles in numerous contexts of matching theory, since barriers essentially coincides with dual optimal solutions of the maximum matching problem. In a special class of graphs called the elementary graphs, the family of maximal barriers forms a partition of the vertices; this partition was found by Lovász and is called the canonical partition. The canonical partition has produced many fundamental results in matching theory, such as the two ear theorem. However, in non-elementary graphs, the family of maximal barriers never forms a partition, and there has not been the canonical partition for general graphs. In this paper, using our previous work, we give a canonical description of structures of the odd-maximal barriers—a class of barriers including the maximal barriers—for general graphs; we also reveal structures of odd components associated with odd-maximal barriers. This result of us can be regarded as a generalization of Lovász’s canonical partition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carvalho, M.H., Cheriyan, J.: An O(VE) algorithm for ear decompositions of matching-covered graphs. ACM Transactions on Algorithms 1(2), 324–337 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing (2009)

    Google Scholar 

  3. Carvalho, M.H., Lucchesi, C.L., Murty, U.S.R.: The matching lattice. In: Reed, B., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics. Springer (2003)

    Google Scholar 

  4. Kita, N.: A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. CoRR abs/1205.3816 (2012)

    Google Scholar 

  5. Kita, N.: A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 85–94. Springer, Heidelberg (2012)

    Google Scholar 

  6. Kita, N.: A generalization of the Dulmage-Mendelsohn decomposition for general graphs (preprint)

    Google Scholar 

  7. Frank, A.: Conservative weightings and ear-decompositions of graphs. Combinatorica 13(1), 65–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer (2003)

    Google Scholar 

  9. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Canadian Journal of Mathematics 10, 517–534 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dulmage, A.L., Mendelsohn, N.S.: A structure theory of bipartite graphs of finite exterior dimension. Transactions of the Royal Society of Canada, Section III 53, 1–13 (1959)

    MATH  Google Scholar 

  11. Dulmage, A.L., Mendelsohn, N.S.: Two algorithms for bipartite graphs. Journal of the Society for Industrial and Applied Mathematics 11(1), 183–194 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Murota, K.: Matrices and matroids for systems analysis. Springer (2000)

    Google Scholar 

  13. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. I. Mathematica Slovaca 9(2), 73–91 (1959) (in slovak)

    Google Scholar 

  14. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. II. Mathematica Slovaca 9(3), 136–159 (1959) (in slovak)

    Google Scholar 

  15. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. III. Mathematica Slovaca 10(4), 205–215 (1960) (in slovak)

    Google Scholar 

  16. Király, Z.: The calculus of barriers. Technical Report TR-9801-2, ELTE (1998)

    Google Scholar 

  17. Kita, N.: A canonical characterization of the family of barriers in general graphs. CoRR abs/1212.5960 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kita, N. (2013). Disclosing Barriers: A Generalization of the Canonical Partition Based on Lovász’s Formulation. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics