Skip to main content

Discretely Following a Curve

  • Conference paper
  • 1201 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

Finding the similarity between paths is an important problem that comes up in many areas such as 3D modeling, GIS applications, ordering, and reachability. Given a set of points S, a polygonal curve P, and an ε > 0, the discrete set-chain matching problem is to find another polygonal curve Q such that the nodes of Q are points in S and d f (P,Q) ≤ ε. Here, d F is the discrete Fréchet distance between the two polygonal curves. For the first time we study the set-chain matching problem based on the discrete Fréchet distance rather than the continuous Fréchet distance. We further extend the problem based on unique or non-unique nodes and on limiting the number of points used. We prove that three of the variations of the set-chain matching problem are NP-complete. For the version of the problem that we prove is polynomial, we give the optimal substructure and the recurrence for a dynamic programming solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accisano, P., Üngör, A.: Hardness results on curve/point set matching with Fréchet distance. In: Proc. of the 29th European Workshop on Computational Geometry, EuroCG 2013, pp. 51–54 (March 2013)

    Google Scholar 

  2. Acharyya, R., Manjanna, B., Das, G.K.: Unit disk cover problem. CoRR, abs/1209.2951 (2012)

    Google Scholar 

  3. Ahn, H.-K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the discrete Fréchet distance with imprecise input. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 422–433. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49(2), 262–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, G.K., Fraser, R., Lòpez-Ortiz, A., Nickerson, B.G.: On the discrete unit disk cover problem. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 146–157. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Information Systems Department, Technical University of Vienna (1994)

    Google Scholar 

  8. Fraser, R., Lòpez-Ortiz, A.: The within-strip discrete unit disk cover problem. In: Proc. of the 24th Canadian Conf. on Computational Geometry, CCCG 2012, pp. 53–58 (2012)

    Google Scholar 

  9. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884 - 1940) 22(1), 1–72 (1906)

    Article  MATH  Google Scholar 

  10. Jiang, M.: Map Labeling with Circles. PhD thesis, Montana State University (2005)

    Google Scholar 

  11. Lichtenstein, D.: Planar Formulae and Their Uses. SIAM Journal on Computing 11(2), 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maheshwari, A., Sack, J.-R., Shahbaz, K., Zarrabi-Zadeh, H.: Staying close to a curve. In: Proc. of the 23rd Canadian Conf. on Computational Geometry, CCCG 2011, August 10-12 (2011)

    Google Scholar 

  13. Mosig, A., Clausen, M.: Approximately matching polygonal curves with respect to the Fréchet distance. Computational Geometry: Theory and Applications 30(2), 113–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete and Computational Geometry 44(4), 883–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shahbaz, K.: Applied Similarity Problems Using Fréchet Distance. PhD thesis, Carleton University (2013)

    Google Scholar 

  16. Wolff, A.: A simple proof for the NP-hardness of edge labeling. Technical Report W-SPNPH-00, Institut für Mathematik und Informatik, Universität Greifswald (2000)

    Google Scholar 

  17. Wylie, T.: The Discrete Fréchet Distance with Applications. PhD thesis, Montana State University (2013)

    Google Scholar 

  18. Wylie, T., Zhu, B.: Discretely following a curve (short abstract). In: Computational Geometry: Young Researchers Forum, CG:YRF 2012, pp. 33–34 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wylie, T. (2013). Discretely Following a Curve. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics