Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 153))

Abstract

Maximally supersymmetric theories do not allow off-shell superspace formulations with traditional superfields containing a finite set of auxiliary fields. It has become clear that off-shell supersymmetric action formulations of such models can be achieved by the introduction of pure spinors. In this talk, an overview of this formalism is given, with emphasis on D = 10 super-Yang–Mills theory and D = 11 supergravity. This a somewhat expanded version of a talk presented at the workshop “Breaking of supersymmetry and ultraviolet divergences in extended supergravity” (BUDS), Laboratori Nazionali di Frascati, March 25–28, 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Brink, J.H. Schwarz, Quantum superspace. Phys. Lett. B 100, 310 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Casalbuoni, The classical mechanics for Bose-Fermi systems. Nuovo Cim. A 33, 389 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.B. Green, J.H. Schwarz, Covariant description of superstrings. Phys. Lett. B 136, 367 (1984)

    Article  ADS  Google Scholar 

  4. W. Siegel, Hidden local supersymmetry in the supersymmetric particle action. Phys. Lett. B 128, 397 (1983)

    Article  ADS  Google Scholar 

  5. I. Bengtsson, M. Cederwall, Covariant superstrings do not admit covariant gauge fixing. Göteborg-ITP-84-21

    Google Scholar 

  6. T. Hori, K. Kamimura, Canonical formulation of superstring. Prog. Theor. Phys. 73, 476 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. E. Bergshoeff, R. Kallosh, Unconstrained BRST for superparticles. Phys. Lett. B 240, 105 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.A. Grassi, G. Policastro, M. Porrati, Covariant quantization of the Brink-Schwarz superparticle. Nucl. Phys. B 606, 380 (2001). arXiv:hep-th/0009239

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. R. Penrose, M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space-time. Phys. Rept. 6, 241 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Shirafuji, Lagrangian mechanics of massless particles with spin. Prog. Theor. Phys. 70, 18 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. A.K.H. Bengtsson, I. Bengtsson, M. Cederwall, N. Linden, Particles, superparticles and twistors. Phys. Rev. D 36, 1766 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Bengtsson, M. Cederwall, Particles, twistors and the division algebras. Nucl. Phys. B 302, 81 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Berkovits, A supertwistor description of the massless superparticle in ten-dimensional superspace. Phys. Lett. B 247, 45 (1990). Nucl. Phys. B 350, 193 (1991)

    Google Scholar 

  14. M. Cederwall, Octonionic particles and the \(S^7\) symmetry. J. Math. Phys. 33, 388 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Witten, An interpretation of classical Yang-Mills theory. Phys. Lett. B 77, 394 (1978)

    Article  ADS  Google Scholar 

  16. E. Witten, Twistor-like transform in ten-dimensions. Nucl. Phys. B 266, 245 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189 (2004). arXiv:hep-th/0312171

    Google Scholar 

  18. N. Berkovits, An alternative string theory in twistor space for \(N=4\) super-Yang-Mills. Phys. Rev. Lett. 93, 011601 (2004). arXiv:hep-th/0402045

    Google Scholar 

  19. N. Berkovits, E. Witten, Conformal supergravity in twistor-string theory. JHEP 0408, 009 (2004). arXiv:hep-th/0406051

    Google Scholar 

  20. F. Cachazo, P. Svrček, E. Witten, Twistor space structure of one-loop amplitudes in gauge theory. JHEP 0410, 074 (2004). arXiv:hep-th/0406177

    Google Scholar 

  21. F. Cachazo, P. Svrček, E. Witten, MHV vertices and tree amplitudes in gauge theory. JHEP 0409, 006 (2004). arXiv:hep-th/0403047

    Google Scholar 

  22. R. Boels, L.J. Mason, D. Skinner, Supersymmetric gauge theories in twistor space. JHEP 0702, 014 (2007). arXiv:hep-th/0604040

    Google Scholar 

  23. T. Adamo, M. Bullimore, L. Mason, D. Skinner, Scattering amplitudes and Wilson loops in twistor space. J. Phys. A 44, 454008 (2011). arXiv:1104.2890 [hep-th]

    Google Scholar 

  24. N. Berkovits, Pure spinors, twistors, and emergent supersymmetry. JHEP 1212, 006 (2012). arXiv:1105.1147 [hep-th]

    Google Scholar 

  25. M. Cederwall, An extension of the twistor concept to string theory. Phys. Lett. B 226, 45 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  26. N. Berkovits, Twistors and the Green-Schwarz superstring. Conf. Proc. C 9115201, 310 (1991)

    Google Scholar 

  27. J. Wess, B. Zumino, Superspace formulation of supergravity. Phys. Lett. B 66, 361 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Brink, J.H. Schwarz, J. Scherk, Supersymmetric Yang-Mills theories. Nucl. Phys. B 121, 77 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Wess, B. Zumino, Supergauge invariant extension of quantum electrodynamics. Nucl. Phys. B 78, 1 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Ferrara, B. Zumino, Supergauge invariant Yang-Mills theories. Nucl. Phys. B 79, 413 (1974)

    Article  ADS  Google Scholar 

  31. R. Grimm, M. Sohnius, J. Wess, Extended supersymmetry and gauge theories. Nucl. Phys. B 133, 275 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Siegel, Superfields in higher dimensional space-time. Phys. Lett. B 80, 220 (1979)

    Article  ADS  Google Scholar 

  33. M. Sohnius, K.S. Stelle, P.C. West, Off mass shell formulation of extended supersymmetric gauge theories. Phys. Lett. B 92, 123 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Cremmer, J. Scherk, S. Ferrara, \(SU(4)\) invariant supergravity theory. Phys. Lett. B 74, 61 (1978)

    Article  ADS  Google Scholar 

  35. E. Cremmer, B. Julia, J. Scherk, Supergravity theory in eleven-dimensions. Phys. Lett. B 76, 409 (1978)

    Article  ADS  Google Scholar 

  36. E. Cremmer, B. Julia, The \(SO(8)\) supergravity. Nucl. Phys. B 159, 141 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.B. Green, J.H. Schwarz, Extended supergravity in ten-dimensions. Phys. Lett. B 122, 143 (1983)

    Article  ADS  Google Scholar 

  38. P.S. Howe, P.C. West, The complete \(N=2\), \(D=10\) supergravity. Nucl. Phys. B 238, 181 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  39. L. Brink, M. Gell-Mann, P. Ramond, J.H. Schwarz, Supergravity as geometry of superspace. Phys. Lett. B 74, 336 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  40. N. Dragon, Torsion and curvature in extended supergravity. Z. Phys. C 2, 29 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  41. L. Brink, P.S. Howe, The N = 8 supergravity in superspace. Phys. Lett. B 88, 268 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  42. L. Brink, P.S. Howe, Eleven-dimensional supergravity on the mass-shell in superspace. Phys. Lett. B 91, 384 (1980)

    Article  ADS  Google Scholar 

  43. E. Cremmer, S. Ferrara, Formulation of eleven-dimensional supergravity in superspace. Phys. Lett. B 91, 61 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  44. B.E.W. Nilsson, Simple ten-dimensional supergravity in superspace. Nucl. Phys. B 188, 176 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  45. P.S. Howe, Supergravity in superspace. Nucl. Phys. B 199, 309 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Cartan, Leçons sur la théorie des spineurs (Hermann, Paris, 1937)

    Google Scholar 

  47. C. Chevalley, The algebraic theory of spinors and Clifford algebras (Springer, Berlin, 1996). Collected works.

    Google Scholar 

  48. J.-I. Igusa, A classification of spinors up to dimension twelve. Am. J. Math. 92, 997 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  49. X.W. Zhu, The classification of spinors under GSpin\({}_{14}\) over finite fields. Trans. Am. Math. Soc. 333, 93 (1992)

    Google Scholar 

  50. V.L. Popov, Classification of spinors of dimension fourteen. Trans. Moscow Math. Soc. 1, 181 (1980)

    ADS  MATH  Google Scholar 

  51. B.E.W. Nilsson, Pure spinors as auxiliary fields in the ten-dimensional supersymmetric yang-mills theory. Class. Quant. Grav. 3, L41 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories. Phys. Lett. B 258, 141 (1991) [Addendum-ibid. B 259 (1991) 511].

    Google Scholar 

  53. P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions. Phys. Lett. B 273, 90 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  54. N. Berkovits, Super Poincaré covariant quantization of the superstring. JHEP 0004, 018 (2000). arXiv:hep-th/0001035

    Google Scholar 

  55. N. Berkovits, Covariant quantization of the superparticle using pure spinors. JHEP 0109, 016 (2001). arXiv:hep-th/0105050

    Google Scholar 

  56. M. Cederwall, B.E.W. Nilsson, D. Tsimpis, The structure of maximally supersymmetric Yang-Mills theory: constraining higher order corrections. JHEP 0106, 034 (2001). arXiv:hep-th/0102009

    Google Scholar 

  57. M. Cederwall, Superspace methods in string theory, supergravity and gauge theory. arXiv:hep-th/0105176

    Google Scholar 

  58. M. Cederwall, B.E.W. Nilsson, D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories. JHEP 0202, 009 (2002). arXiv:hep-th/0110069

    Google Scholar 

  59. M. Cederwall, B.E.W. Nilsson, D. Tsimpis, \(D = 10\) super-Yang-Mills at \(O(\alpha ^{\prime 2})\). JHEP 0107, 042 (2001). arXiv:hep-th/0104236

    Google Scholar 

  60. M. Cederwall, B.E.W. Nilsson, D. Tsimpis, Spinorial cohomology of abelian \(D=10\) super-Yang-Mills at \(O(\alpha ^{\prime 3})\). JHEP 0211, 023 (2002). arXiv:hep-th/0205165

    Google Scholar 

  61. M. Cederwall, U. Gran, M. Nielsen, B.E.W. Nilsson, Manifestly supersymmetric M theory. JHEP 0010, 041 (2000). arXiv:hep-th/0007035

    Google Scholar 

  62. M. Cederwall, U. Gran, M. Nielsen, B.E.W. Nilsson, Generalized 11-dimensional supergravity. arXiv:hep-th/0010042

    Google Scholar 

  63. M. Cederwall, U. Gran, B.E.W. Nilsson, D. Tsimpis, Supersymmetric corrections to eleven-dimensional supergravity. JHEP 0505, 052 (2005). arXiv:hep-th/0409107

    Google Scholar 

  64. P.S. Howe, D. Tsimpis, On higher order corrections in M theory. JHEP 0309, 038 (2003). arXiv:hep-th/0305129

    Google Scholar 

  65. D. Tsimpis, \(R^4\) in type II superstrings. Fortsch. Phys. 56, 537 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  66. G. Policastro, D. Tsimpis, \(R^4\), purified. Class. Quant. Grav. 23, 4753 (2006). arXiv:hep-th/0603165

    Google Scholar 

  67. V. Alexandrov, D. Krotov, A. Losev, V. Lysov, On pure spinor superfield formalism. JHEP 0710, 074 (2007). arXiv:0705.2191 [hep-th]

    Google Scholar 

  68. M. Movshev, A.S. Schwarz, On maximally supersymmetric Yang-Mills theories. Nucl. Phys. B 681, 324 (2004). arXiv:hep-th/0311132

    Google Scholar 

  69. M.Movshev,A. Schwarz, Supersymmetric deformations ofmaximally supersymmetric gauge theories. JHEP 1209, 136 (2012). arXiv:0910.0620 [hep-th]

    Google Scholar 

  70. M. Cederwall, Towards a manifestly supersymmetric action for 11-dimensional supergravity. JHEP 1001, 117 (2010). arXiv:0912.1814 [hep-th]

    Google Scholar 

  71. M. Cederwall, \(D=11\) supergravity with manifest supersymmetry. Mod. Phys. Lett. A 25, 3201 (2010). arXiv:1001.0112 [hep-th]

    Google Scholar 

  72. M. Cederwall, \(N=8\) superfield formulation of the Bagger-Lambert-Gustavsson model. JHEP 0809, 116 (2008). arXiv:0808.3242 [hep-th]

    Google Scholar 

  73. M. Cederwall, Superfield actions for \(N=8\) and \(N=6\) conformal theories in three dimensions. JHEP 0810, 070 (2008). arXiv:0809.0318 [hep-th]

    Google Scholar 

  74. M. Cederwall, Pure spinor superfields, with application to \(D=3\) conformal models. arXiv:0906.5490 [hep-th]

    Google Scholar 

  75. N. Berkovits, Pure spinor formalism as an \(N=2\) topological string. JHEP 0510, 089 (2005). arXiv:hep-th/0509120

    Google Scholar 

  76. O.A. Bedoya, N. Berkovits, GGI lectures on the pure spinor formalism of the superstring. arXiv:0910.2254 [hep-th]

    Google Scholar 

  77. N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring. JHEP 0409, 047 (2004). arXiv:hep-th/0406055

    Google Scholar 

  78. P.A. Grassi, P. Vanhove, Topological M theory from pure spinor formalism. Adv. Theor. Math. Phys. 9, 285 (2005). arXiv:hep-th/0411167

    Google Scholar 

  79. I. Oda, M. Tonin, On the \(b\)-antighost in the pure spinor quantization of superstrings. Phys. Lett. B 606, 218 (2005). arXiv:hep-th/0409052

    Google Scholar 

  80. N. Berkovits, C.R. Mafra, Some superstring amplitude computations with the non-minimal pure spinor formalism. JHEP 0611, 079 (2006). arXiv:hep-th/0607187

    Google Scholar 

  81. N. Berkovits, N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism. JHEP 0612, 029 (2006). arXiv:hep-th/0609012

    Google Scholar 

  82. I. Oda, M. Tonin, Y-formalism and \(b\) ghost in the non-minimal pure spinor formalism of superstrings. Nucl. Phys. B 779, 63 (2007). arXiv:0704.1219 [hep-th]

    Google Scholar 

  83. J. Hoogeveen, K. Skenderis, BRST quantization of the pure spinor superstring. JHEP 0711, 081 (2007). arXiv:0710.2598 [hep-th]

    Google Scholar 

  84. C. Stahn, Fermionic superstring loop amplitudes in the pure spinor formalism. JHEP 0705, 034 (2007). arXiv:0704.0015 [hep-th]

    Google Scholar 

  85. Y. Aisaka, E.A. Arroyo, N. Berkovits, N. Nekrasov, Pure spinor partition function and the massive superstring spectrum. JHEP 0808, 050 (2008). arXiv:0806.0584 [hep-th]

    Google Scholar 

  86. O.A. Bedoya, Superstring sigma model computations using the pure spinor formalism. arXiv:0808.1755 [hep-th]

    Google Scholar 

  87. C.R. Mafra, Superstring scattering amplitudes with the pure spinor formalism. arXiv:0902.1552 [hep-th]

    Google Scholar 

  88. Y. Aisaka, N. Berkovits, Pure spinor vertex operators in Siegel gauge and loop amplitude regularization. JHEP 0907, 062 (2009). arXiv:0903.3443 [hep-th]

    Google Scholar 

  89. H. Gomez, One-loop superstring amplitude from integrals on pure spinors space. JHEP 0912, 034 (2009). arXiv:0910.3405 [hep-th]

    Google Scholar 

  90. P.A. Grassi, P. Vanhove, Higher-loop amplitudes in the non-minimal pure spinor formalism. JHEP 0905, 089 (2009). arXiv:0903.3903 [hep-th]

    Google Scholar 

  91. C.R. Mafra, C. Stahn, The one-loop open superstring massless five-point amplitude with the non-minimal pure spinor formalism. JHEP 0903, 126 (2009). arXiv:0902.1539 [hep-th]

    Google Scholar 

  92. N. Berkovits, J. Hoogeveen, K. Skenderis, Decoupling of unphysical states in the minimal pure spinor formalism II. JHEP 0909, 035 (2009). arXiv:0906.3371 [hep-th]

    Google Scholar 

  93. C.R. Mafra, O. Schlotterer, S. Stieberger, D. Tsimpis, Six open string disk amplitude in pure spinor superspace. Nucl. Phys. B 846, 359 (2011). arXiv:1011.0994 [hep-th]

    Google Scholar 

  94. I.Y. Park, Pure spinor computation towards open string three-loop. JHEP 1009, 008 (2010). arXiv:1003.5711 [hep-th]

    Google Scholar 

  95. H. Gomez, C.R. Mafra, The overall coefficient of the two-loop superstring amplitude using pure spinors. JHEP 1005, 017 (2010). arXiv:1003.0678 [hep-th]

    Google Scholar 

  96. M. Tonin, Pure spinor approach to type IIA superstring sigma models and free differential algebras. JHEP 1006, 083 (2010). arXiv:1002.3500 [hep-th]

    Google Scholar 

  97. C.R. Mafra, O. Schlotterer, S. Stieberger, Complete \(N\)-point superstring disk amplitude I. Pure spinor computation. Nucl. Phys. B 873, 419 (2013). arXiv:1106.2645 [hep-th]

    Google Scholar 

  98. G. Alencar, M.O. Tahim, R.R. Landim, R.N. Costa Filho, RNS and pure spinors equivalence for type I tree level amplitudes involving up to four fermions. arXiv:1104.1939 [hep-th]

    Google Scholar 

  99. I. Oda, M. Tonin, Free differential algebras and pure spinor action in IIB superstring sigma models. JHEP 1106, 123 (2011). arXiv:1103.5645 [hep-th]

    Google Scholar 

  100. H. Gomez, Notes on the overall coefficient of the two-loop superstring amplitude using pure spinor. Fortsch. Phys. 60, 1030 (2012)

    Article  ADS  MATH  Google Scholar 

  101. N. Berkovits, Towards covariant quantization of the supermembrane. JHEP 0209, 051 (2002). arXiv:hep-th/0201151

    Google Scholar 

  102. M. Babalic, N. Wyllard, Towards relating the kappa-symmetric and pure-spinor versions of the supermembrane. JHEP 0810, 059 (2008). arXiv: 0808.3691 [hep-th]

    Google Scholar 

  103. P. Fré, P.A. Grassi, Pure spinors, free differential algebras, and the supermembrane. Nucl. Phys. B 763, 1 (2007). arXiv:hep-th/0606171

    Google Scholar 

  104. N. Berkovits, D.Z. Marchioro, Relating the Green-Schwarz and pure spinor formalisms for the superstring. JHEP 0501, 018 (2005). arXiv:hep-th/0412198

    Google Scholar 

  105. M. Matone, L. Mazzucato, I. Oda, D. Sorokin, M. Tonin, The superembedding origin of the Berkovits pure spinor covariant quantization of superstrings. Nucl. Phys. B 639, 182 (2002). arXiv:hep-th/0206104

    Google Scholar 

  106. Y. Aisaka, Y. Kazama, Origin of pure spinor superstring. JHEP 0505, 046 (2005). arXiv:hep-th/0502208

    Google Scholar 

  107. P.S. Howe, Weyl superspace. Phys. Lett. B 415, 149 (1997). arXiv:hep-th/9707184

    Google Scholar 

  108. S.J. Gates Jr, K.S. Stelle, P.C. West, Algebraic origins of superspace constraints in supergravity. Nucl. Phys. B 169, 347 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  109. S.J. Gates Jr, W. Siegel, Understanding constraints in superspace formulations of supergravity. Nucl. Phys. B 163, 519 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  110. M. Cederwall, A. Karlsson, Pure spinor superfields and Born-Infeld theory. JHEP 1111, 134 (2011). arXiv:1109.0809 [hep-th]

    Google Scholar 

  111. N. Berkovits, Cohomology in the pure spinor formalism for the superstring. JHEP 0009, 046 (2000). arXiv:hep-th/0006003

    Google Scholar 

  112. N. Berkovits, N. Nekrasov, The character of pure spinors. Lett. Math. Phys. 74, 75 (2005). arXiv:hep-th/0503075

    Google Scholar 

  113. M. Chesterman, Ghost constraints and the covariant quantization of the superparticle in ten-dimensions. JHEP 0402, 011 (2004). arXiv:hep-th/0212261

    Google Scholar 

  114. M. Chesterman, On the pure spinor superparticle cohomology. Nucl. Phys. Proc. Suppl. 171, 269 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  115. M. Cederwall, J. Palmkvist, “Serre relations, constraints and partition functions” to appear

    Google Scholar 

  116. J. Bagger, N. Lambert, Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). arXiv:hep-th/0611108

    Google Scholar 

  117. A. Gustavsson, Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66 (2009). arXiv:0709.1260 [hep-th]

    Google Scholar 

  118. J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]

    Google Scholar 

  119. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008). arXiv:0806.1218 [hep-th]

    Google Scholar 

  120. M. Cederwall, B.E.W. Nilsson, Pure spinors and \(D=6\) super-Yang-Mills. arXiv:0801.1428 [hep-th]

    Google Scholar 

  121. M. Cederwall, U. Gran, B.E.W. Nilsson, \(D=3\), \(N=8\) conformal supergravity and the Dragon window. JHEP 1109, 101 (2011). arXiv:1103.4530 [hep-th]

    Google Scholar 

  122. B.E.W. Nilsson, A.K. Tollsten, The geometrical off-shell structure of pure \(N=1\) \(D=10\) supergravity in superspace. Phys. Lett. B 169, 369 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  123. A. Candiello, K. Lechner, Duality in supergravity theories. Nucl. Phys. B 412, 479 (1994). arXiv:hep-th/9309143

    Google Scholar 

  124. M. Cederwall, The geometry of pure spinor space. JHEP 1201, 150 (2012). arXiv:1111.1932 [hep-th]

    Google Scholar 

  125. N. Berkovits, S.A. Cherkis, Higher-dimensional twistor transforms using pure spinors. JHEP 0412, 049 (2004). arXiv:hep-th/0409243

    Google Scholar 

  126. M. Cederwall, A. Karlsson, Loop amplitudes in maximal supergravity with manifest supersymmetry. JHEP 1303, 114 (2013). arXiv:1212.5175 [hep-th]

    Google Scholar 

  127. L. Anguelova, P.A. Grassi, P. Vanhove, Covariant one-loop amplitudes in \(D=11\). Nucl. Phys. B 702, 269 (2004). arXiv:hep-th/0408171

    Google Scholar 

  128. N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors, and anomalies. arXiv:hep-th/0511008

    Google Scholar 

  129. I.A. Batalin, G.A. Vilkovisky, Gauge algebra and quantization. Phys. Lett. B 102, 27 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  130. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  131. A. Fuster, M. Henneaux, A. Maas, BRST quantization: a short review. Int. J. Geom. Meth. Mod. Phys. 2, 939 (2005). arXiv:hep-th/0506098

    Google Scholar 

  132. S. Weinber, The Quantum Theory of Fields, vol. 2 (Princeton University Press, Princeton, 1996) (Modern applications)

    Google Scholar 

  133. N. Boulanger, T. Damour, L. Gualtieri, M. Henneaux, Inconsistency of interacting, multigraviton theories. Nucl. Phys. B 597, 127 (2001). arXiv:hep-th/0007220

    Google Scholar 

  134. A. Karlsson, Loop amplitude diagrams in manifest, maximal supersymmetry. Talk presented at BUDS, March 2013, Frascati.

    Google Scholar 

  135. W. Siegel, Introduction to String Field Theory. arXiv:hep-th/0107094

    Google Scholar 

  136. O. Chandia, The \(b\) ghost of the pure spinor formalism is nilpotent. Phys. Lett. B 695, 312 (2011). arXiv:1008.1778 [hep-th]

    Google Scholar 

  137. R. Lipinski Jusinskas, Nilpotency of the \(b\) ghost in the non-minimal pure spinor formalism. JHEP 1305, 048 (2013). arXiv:1303.3966 [hep-th]

    Google Scholar 

  138. N. Berkovits, Dynamical twisting and the b ghost in the pure spinor formalism. arXiv:1305.0693 [hep-th]

    Google Scholar 

  139. J. Björnsson, M.B. Green, 5 loops in 24/5 dimensions. JHEP 1008, 132 (2010). arXiv:1004.2692 [hep-th]

    Google Scholar 

  140. J. Björnsson, Multi-loop amplitudes in maximally supersymmetric pure spinor field theory. JHEP 1101, 002 (2011). arXiv:1009.5906 [hep-th]

    Google Scholar 

  141. A. Coimbra, C. Strickland-Constable and D. Waldram, \(E_{d(d)} \times {R}^+\) generalised geometry, connections and M theory. arXiv:1112.3989 [hep-th]

    Google Scholar 

  142. A. Coimbra, C. Strickland-Constable, D. Waldram, Supergravity as generalised geometry II: \(E_{d(d)} \times {R}^+\) and M theory. arXiv:1212.1586 [hep-th]

    Google Scholar 

  143. M. Cederwall, J. Edlund, A. Karlsson, Exceptional geometry and tensor fields. JHEP. arXiv:1302.6736 [hep-th]

    Google Scholar 

  144. M. Cederwall, Non-gravitational exceptional supermultiplets. JHEP. arXiv:1302.6737 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Cederwall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cederwall, M. (2014). Pure Spinor Superfields: An Overview. In: Bellucci, S. (eds) Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity. Springer Proceedings in Physics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-03774-5_4

Download citation

Publish with us

Policies and ethics