Skip to main content

Constitutive Relations, Off Shell Duality Rotations and the Hypergeometric Form of Born-Infeld Theory

  • Conference paper
  • First Online:
Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 153))

Abstract

We review equivalent formulations of nonlinear and higher derivatives theories of electromagnetism exhibiting electric-magnetic duality rotations symmetry. We study in particular on shell and off shell formulations of this symmetry, at the level of action funcitonals as well as of equations of motion. We prove the conjecture that the action functional leading to Born-Infeld nonlinear electromagnetism, that is duality rotation invariant off shell and that is known to be a root of an algebraic equation of fourth order, is a hypergeometric function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nonlinear and higher derivatives theories of electromagnetism admit one (or more) dimensionful coupling constant(s) \(\lambda \).

  2. 2.

    The factor 2 is due to the convention \(\frac{\partial {F_{\rho \sigma }}}{\partial F_{\mu \nu }}=\delta ^\mu _\rho \delta ^\nu _\sigma \,\) adopted in [7] and in the review [37]. It will be used throughout the paper.

  3. 3.

    Note that (2.16) (the integrated form of the more restrictive self-duality condition \(F\widetilde{F}+G\widetilde{G}\)) also follows in a straightforward manner by repeating the passages in [7] but with \(G\) the functional derivatives of the action rather than the partial derivatives of the lagrangian [13, 37]. This makes a difference for nonlinear theories which also contain terms with derivatives of \(F\).

  4. 4.

    In a general nonlinear theory the Hamiltonian depends on the magnetic field \({\overrightarrow{B}}\) and on the electric displacement \(\overrightarrow{D}=\frac{\delta S[F]}{\delta {\overrightarrow{E}}}\), that rotate into each other under the duality (2.11), \(\Big ({}^{~{\overrightarrow{B}}'}_{-{\overrightarrow{D}}'}\Big )= \left( \begin{array}{lr} \cos {\alpha } &{} {-\sin {\alpha }}\\ {\sin {\alpha }} &{}{\mathrm{cos}{\alpha }} \end{array}\right) \Big ({}^{~{\overrightarrow{B}}}_{-{D}}\Big )\). Since the composite fields \({\overrightarrow{B}}^2+{\overrightarrow{D}}^2\) and \((\overrightarrow{B}\times \overrightarrow{D})^2\) are duality invariant, Hamiltonians that depend upon these combinations and their derivatives are trivially duality invariant and lead to duality symmetric theories.

References

  1. E. Schrödinger, Contributions to Born’s new theory of the electromagnetic field. Proc. Roy. Soc. (London) A150, 465 (1935)

    Google Scholar 

  2. M. Born, L. Infeld, Foundations of the new field theory. Proc. Roy. Soc. (London) A144, 425 (1934)

    Google Scholar 

  3. S. Ferrara, J. Scherk, B. Zumino, Algebraic properties of extended supergravity theories. Nucl. Phys. B121, 393 (1977)

    Article  ADS  Google Scholar 

  4. E. Cremmer, J. Scherk, S. Ferrara, SU(4) invariant supergravity theory. Phys. Lett. B 74, 61 (1978)

    Article  ADS  Google Scholar 

  5. E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Cremmer, B. Julia, The N=8 supergravity theory. 1. The lagrangian. Phys. Lett. B 80, 48 (1978)

    Article  ADS  Google Scholar 

  7. M.K. Gaillard, B. Zumino, Duality rotations for interacting fields. Nucl. Phys. B 193, 221 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.W. Gibbons, D.A. Rasheed, SL(2, R) invariance of nonlinear electrodynamics coupled to an axion and a dilaton. Phys. Lett. B 365, 46 (1996). arXiv:hep-th/9509141

  9. J. Bagger, A. Galperin, A new goldstone multiplet for partially broken supersymmetry. Phys. Rev. D 55, 1091 (1997). arXiv:hep-th/9608177

  10. S. Deser, R. Puzalowski, Supersymmetric nonpolynomial vector multiplets and causal propagation. J. Phys. A13, 2501 (1980)

    ADS  MathSciNet  Google Scholar 

  11. S. Cecotti, S. Ferrara, Supersymmetric Born-Infeld lagrangians. Phys. Lett. B 187, 335 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. S.V. Ketov, A manifestly N=2 supersymmetric Born-Infeld action. Mod. Phys. Lett. A 14, 501 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.M. Kuzenko, S. Theisen, Supersymmetric duality rotations. JHEP 0003, 034 (2000). arXiv:hep-th/0001068

  14. S.M. Kuzenko, S. Theisen, Nonlinear selfduality and supersymmetry. Fortsch. Phys 49, 273 (2001). arXiv:hep-th/0007231

  15. S. Bellucci, E. Ivanov, S. Krivonos, Towards the complete N=2 superfield Born-Infeld action with partially broken N=4 supersymmetry. Phys. Rev. D64, 025014 (2001). arXiv:hep-th/0101195

  16. M. Rocek, A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions. Phys. Rev. D 59, 106001 (1999). arXiv:hep-th/9811232

  17. S.V. Ketov, Born-Infeld-goldstone superfield actions for gauge-fixed D-5 and D-3 branes in 6d. Nucl. Phys. B 553, 250 (1999). arXiv:hep-th/9812051

  18. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N=8 supergravity. Phys. Rev. D 78, 105019 (2008). arXiv:0808.4112 [hep-th]

  19. J. Broedel, L.J. Dixon, R**4 counterterm and E(7)(7) symmetry in maximal supergravity. JHEP 1005, 003 (2010). arXiv:0911.5704 [hep-th]

  20. H. Elvang, M. Kiermaier, Stringy KLT relations, global symmetries, and \(E_{7(7)}\) violation. JHEP 1010, 108 (2010). arXiv:1007.4813 [hep-th]

  21. N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales, S. Stieberger, E7(7) constraints on counterterms in N=8 supergravity. Phys. Lett. B 694, 265 (2010). arXiv:1009.1643 [hep-th]

  22. G. Bossard, P.S. Howe, K.S. Stelle, JHEP 1101, 020 (2011). arXiv:1009.0743 [hep-th]

  23. R. Kallosh, \(E_{7(7)}\) symmetry and finiteness of N=8 supergravity. JHEP 1203, 083 (2012). arXiv:1103.4115 [hep-th]

  24. R. Kallosh, \({\cal N}=8\) counterterms and \(E_{7(7)}\) current conservation. JHEP 1106, 073 (2011). arXiv:1104.5480 [hep-th]

  25. G. Bossard, H. Nicolai, Counterterms vs. dualities. JHEP 1108, 074 (2011). arXiv:1105.1273 [hep-th]

  26. J.J.M. Carrasco, R. Kallosh, R. Roiban, Covariant procedures for perturbative non-linear deformation of duality-invariant theories. Phys. Rev. D 85, 025007 (2012). arXiv:1108.4390 [hep-th]

  27. W. Chemissany, R. Kallosh, T. Ortin, Born-Infeld with higher derivatives. Phys. Rev. D 85, 046002 (2012). arXiv:1112.0332 [hep-th]

  28. J. Broedel, J.J.M. Carrasco, S. Ferrara, R. Kallosh, R. Roiban, N=2 supersymmetry and U(1)-duality. Phys. Rev. D 85, 125036 (2012). arXiv:1202.0014 [hep-th]

  29. S.M. Kuzenko, Nonlinear self-duality in N = 2 supergravity. JHEP 1206, 012 (2012). arXiv:1202.0126 [hep-th]

  30. S.M. Kuzenko, Duality rotations in supersymmetric nonlinear electrodynamics revisited. J. High Energy Phys. 2013(3), 1–21 (2013)

    Article  Google Scholar 

  31. E. Ivanov, O. Lechtenfeld, B. Zupnik, Auxiliary superfields in N=1 supersymmetric self-dual electrodynamics. JHEP 1305, 133 (2013). arXiv:1303.5962 [hep-th]

  32. E.A. Ivanov, B.M. Zupnik, N=3 supersymmetric Born-Infeld theory. Nucl. Phys. B 618, 3 (2001). arXiv:hep-th/0110074

  33. E.A. Ivanov, B.M. Zupnik, New approach to nonlinear electrodynamics: dualities as symmetries of interaction. Phys. Atom. Nucl. 67, 2188 (2004) [Yad. Fiz. 67 (2004) 2212]. arXiv:hep-th/0303192

  34. E.A. Ivanov, B.M. Zupnik, Bispinor auxiliary fields in duality-invariant electrodynamics revisited. Phys. Rev. D 87(3), 065023 (2013). arXiv:1212.6637 [hep-th]

  35. P. Aschieri, S. Ferrara, Constitutive relations and Schroedinger’s formulation of nonlinear electromagnetic theories. JHEP 1305, 087 (2013). arXiv:1302.4737 [hep-th]

  36. M. K. Gaillard, B. Zumino, Nonlinear electromagnetic self-duality and Legendre transformations. arXiv:hep-th/9712103

  37. P. Aschieri, S. Ferrara, B. Zumino, Duality rotations in nonlinear electrodynamics and in extended supergravity. Riv. Nuovo Cim. 31, 625 (2008). arXiv:0807.4039 [hep-th]

  38. M. Hatsuda, K. Kamimura, S. Sekiya, Electric magnetic duality invariant lagrangians. Nucl. Phys. B 561, 341 (1999). arXiv:hep-th/9906103

Download references

Acknowledgments

P.A. acknowledges the hospitality of Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut during commencement of the present work, and the hospitality of Galileo Galilei Institute during its completion. This work is supported by the ERC Advanced Grant no. 226455, Supersymmetry, Quantum Gravity and Gauge Fields (SUPERFIELDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Aschieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Aschieri, P., Ferrara, S., Theisen, S. (2014). Constitutive Relations, Off Shell Duality Rotations and the Hypergeometric Form of Born-Infeld Theory. In: Bellucci, S. (eds) Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity. Springer Proceedings in Physics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-03774-5_2

Download citation

Publish with us

Policies and ethics