Skip to main content

Other Transport Properties of Porous Media

  • Chapter
Percolation Theory for Flow in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 880))

  • 2658 Accesses

Abstract

The saturation dependence of the air permeability, solute and gas diffusion are shown to obey universal expressions from percolation theory. In the case of the air permeability and gas diffusion, changing the air content of the medium does not change the radius of the bottleneck pore size, meaning that the pore-size distribution is irrelevant to the saturation dependence. If the pore-size distribution does not play a role, the controlling influence on this behavior is the universal evolution of the topology of the infinite cluster with changing moisture content. The scaling of the diffusion constant with percolation probability in a finite system is known to follow the same function as the electrical conductivity. Since we showed in Chap. 6 that the pore-size distribution is typically (though not always) unimportant to the saturation-dependence of the electrical conductivity, one expects the same universal scaling behavior for the solute diffusion. The thermal conductivity is shown to have an important dependence on particle-particle contact resistance values at low moisture contents, to follow approximately the universal expression from percolation theory at intermediate moisture contents and, nearer saturation to follow a universal expression from effective-medium theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Mech. Eng. 146, 54–61 (1942)

    Google Scholar 

  2. Barraclough, D., Nye, P.H.: The effect of molecular size on diffusion characteristics in soil. J. Soil Sci. 30, 29 (1979)

    Google Scholar 

  3. Barraclough, D., Tinker, P.B.: The determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk density. J. Soil Sci. 32, 225 (1981)

    Google Scholar 

  4. Bidadi, H., Schroeder, P.A., Pinnavaia, T.J.: Dielectric properties of montmorillonite clay films. Effects of water and layer charge reduction. J. Phys. Chem. Solids 49, 1435–1440 (1988)

    Google Scholar 

  5. Binley, A., Slater, L.D., Fukes, M., Cassiani, G.: Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resour. Res. 41, W12417 (2005)

    Google Scholar 

  6. Bristow, K.L.: Thermal conductivity. In: Dane, J.H., Topp, C. (eds.) Methods of Soil Analysis. Part 4: Physical Methods, pp. 1209–1232. Soil Science Society of America, Madison (2002)

    Google Scholar 

  7. Breede, K.: Characterization of effective hydraulic properties of unsaturated porous media using spectral induced polarization (SIP). Schriften des Forschungszentrums Jülich. Reihe Energy & Environment 175, 72 S., 2013, ISBN 978-3-89336-875-4

    Google Scholar 

  8. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Colorado State Univ. Hydrology Paper 3 (1964)

    Google Scholar 

  9. Campbell, G.S.: Soil Physics with BASIC. Elsevier, New York (1985)

    Google Scholar 

  10. Chaudhary, D.R., Bhandari, R.C.: Thermal conductivity of two-phase porous materials: dry soils. Brit. J. Appl. Phys. (J. Phys. D) 2, 609–610 (1969)

    Google Scholar 

  11. Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O): The determination of diffusion coefficient of invert materials. TDR-EBS-MD-000002 REV 00.CRWMS M&O Las Vegas, NV (2000)

    Google Scholar 

  12. Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O), Invert diffusion properties model. ANL-EBS-MD-000031 REV 01.CRWMS M&O Las Vegas, NV (2000)

    Google Scholar 

  13. Cole, K.S.: Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941)

    Google Scholar 

  14. Collis-George, N.: Relationship between air and water permeabilities in porous media. Soil Sci. 76(4), 239–250 (1953)

    Google Scholar 

  15. Conca, J.L.: Diffusion barrier transport properties of unsaturated paintbrush tuff rubble backfill. In: Proc. First Int’l. High-Level Radioactive Waste Management Conf, pp. 394–401. ASCE and American Nuclear Society, Las Vegas (1990)

    Google Scholar 

  16. Conca, J.L., Wright, J.: Diffusion and flow in gravel, soil, and whole rock. Appl. Hydrogeol. 1, 5–24 (1992)

    Google Scholar 

  17. Côté, J., Konrad, J.-M.: A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J. 42, 443–458 (2005)

    Google Scholar 

  18. Cremers, A., van Loon, J., Laudelout, H.: Geometry effects for specific electrical conductance in clays and soils. In: Proc. 14th Int’l. Conf. Clays Clay Miner., Ghent, Belgium, pp. 149–162 (1966)

    Google Scholar 

  19. Currie, J.A.: Movement of gases in soil respiration. In: Sorption and Transport Processes in Soils. Monogr. Soc. Chem. Ind., vol. 37, pp. 152–171 (1970)

    Google Scholar 

  20. Dane, J., Vrugt, J.A., Unsal, E.: Soil hydraulic functions determined from measurements of air permeability, capillary modeling, and high-dimensional parameter estimation. Vadose Zone J. 10(1), 459–465 (2011). doi:10.2136/vzj2010.0053

    Google Scholar 

  21. Davidson, D.W.: Dielectric relaxation in glycerol, propylene glycol, and normal-propanol. J. Chem. Phys. 19, 1484 (1951)

    Google Scholar 

  22. Davis, H.T.: On the fractal character of the porosity of natural sandstone. Europhys. Lett. 8, 629–632 (1989)

    Google Scholar 

  23. Dixon, P.K., Wu, L., Nagel, S.R., Williams, B.D., Carini, J.P.: Scaling in the relaxation of super-cooled liquids. Phys. Rev. Lett. 65, 1108 (1990)

    Google Scholar 

  24. Dury, O.: Organic pollutants in unsaturated soils: Effect of butanol as a model contaminant on phase saturation and flow characteristics of a quartz sand packing. Ph.D. thesis, Swiss Fed. Inst. of Technol, Zürich, Switzerland (1997)

    Google Scholar 

  25. Dyre, J.C.: Some remarks on ac conduction in disordered solids. J. Non-Cryst. Solids 135, 219 (1991)

    Google Scholar 

  26. Dyre, J.C., Schroeder, T.B.: Universality of ac conduction in disordered solids. Rev. Mod. Phys. 72, 873–892 (2000)

    Google Scholar 

  27. Egbert, G.D.: On the generation of ULF magnetic variations by conductivity fluctuations in a fault zone. Pure Appl. Geophys. 159, 1205–1227 (2002)

    Google Scholar 

  28. Ewing, R.P., Horton, R.: Scaling in diffusive transport. In: Pachepsky, Ya. (ed.) Scaling Methods in Soil Physics, pp. 49–61. CRC Press, Boca Raton (2003)

    Google Scholar 

  29. Ewing, R.P., Horton, R.: Thermal conductivity of a cubic lattice of spheres with capillary bridges. J. Phys. D, Appl. Phys. 40, 4959–4965 (2007)

    Google Scholar 

  30. Freund, F., Sornette, D.: Electromagnetic earthquake bursts and critical rupture of peroxy bond networks in rocks. Tectonophysics 431, 33–47 (2007)

    Google Scholar 

  31. Friedman, L., Pollak, M.: The Hall effect in the variable-range hopping system. Philos. Mag. B 44, 487–507 (1981)

    Google Scholar 

  32. Funke, K.: Ion transport and relaxation studied by high frequency conductivity and quasi-elastic neutron scattering. Philos. Mag. A 64, 1025–1034 (1991)

    Google Scholar 

  33. Gao, Y., Crampin, S.: Observations of stress relaxation before earthquakes. Geophys. J. Int. 157(2), 578–582 (2004)

    Google Scholar 

  34. Graham-Bryce, I.J.: Effect of moisture content and soil type on self diffusion of 86Rubidium in soils. J. Agric. Sci. 60, 239 (1963)

    Google Scholar 

  35. Havlin, S., ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36(6), 695–798 (1987)

    Google Scholar 

  36. Havriliak, S., Negami, S.: A complex plane analysis of α-dispersion in some polymer systems. J. Polym. Sci. C 14, 99–117 (1966)

    Google Scholar 

  37. Hazlett, R.D., Furr, M.J.: Percolation model for permeability reduction in porous media by continuous-gas foams. Ind. Eng. Chem. Res. 39, 2709–2716 (2000)

    Google Scholar 

  38. Hu, Q., Wang, J.: Aqueous phase diffusion in unsaturated geologic media: a review. Crit. Rev. Environ. Sci. Technol. 33, 275–297 (2003)

    Google Scholar 

  39. Hu, Q., Kneafsey, T.J., Roberts, J.J., Tomutsa, L., Wang, J.S.Y.: Characterizing unsaturated diffusion in porous tuff gravel. Vadose Zone J. 3, 1425–1438 (2004)

    Google Scholar 

  40. Hunt, A.: Transport in ionic conducting glasses. J. Phys. Condens. Matter 3(40), 7831–7842 (1991)

    Google Scholar 

  41. Hunt, A.: Dielectric and mechanical relaxation in liquids and glasses: transition from effective medium to percolation theories. Solid State Commun. 84(7), 701–704 (1992)

    Google Scholar 

  42. Hunt, A.G.: AC hopping conduction: perspective from percolation theory. Philos. Mag. B 81, 875–913 (2001)

    Google Scholar 

  43. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conductances. Adv. Water Resour. 24(3,4), 279–307 (2001)

    Google Scholar 

  44. Hunt, A.G.: Continuum percolation theory for saturation dependence of air permeability. Vadose Zone J. 4, 134–138 (2005)

    Google Scholar 

  45. Hunt, A.G., Ewing, R.P.: On the vanishing of solute diffusion in porous media at a threshold moisture content. Soil Sci. Soc. Am. J. 67, 1701–1702 (2003)

    Google Scholar 

  46. Hunt, A.G., Logsdon, S.D., Laird, D.A.: Percolation treatment of charge transfer in humidified smectite clays. Soil Sci. Soc. Am. J. 70, 14–23 (2006)

    Google Scholar 

  47. Hunt, A., Gershenzon, N., Bambakidis, G.: Pre-seismic electromagnetic phenomena in the framework of percolation and fractal theories. Tectonophysics 431, 23–32 (2007)

    Google Scholar 

  48. Hunt, A.G., Huisman, J.A., Vereecken, H.: On the origin of slow processes of charge transport in porous media. Philos. Mag. 92(36), 4628–4648 (2012)

    Google Scholar 

  49. Jonscher, A.K.: The “universal” dielectric response. Nature (London) 267, 673–679 (1977)

    Google Scholar 

  50. Jurinak, J.J., Sandhu, S.S., Dudley, L.M.: Ionic diffusion coefficients as predicted by conductometric techniques. Proc., Soil Sci. Soc. Am. 51, 626 (1987)

    Google Scholar 

  51. Kemna, A., Münch, H.-M., Titov, K., Zimmermann, E., Vereecken, H.: Relation of SIP relaxation time of sands to salinity, grain size and hydraulic conductivity. In: 11th Eur. Mtng. Environ. Eng. Geophys., Palermo, Italy (2005). P054

    Google Scholar 

  52. Kirkpatrick, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973)

    Google Scholar 

  53. Klein, J.D., Sill, W.R.: Electrical properties of artificial claybearing sandstone. Geophysics 47, 1593–1602 (1982)

    Google Scholar 

  54. Klute, A., Letey, J.: The dependence of ionic diffusion on the moisture content of nonsorbing porous media. Proc., Soil Sci. Soc. Am. 22, 213 (1958)

    Google Scholar 

  55. Kohlrausch, R.: Ann. Phys. (Leipz.) 12, 393 (1847)

    Google Scholar 

  56. Kohlrausch, R.: Pogg. Ann. Phys. Chem. 91, 179 (1854)

    Google Scholar 

  57. Krohn, C.J.: Fractal measurements of sandstones, shales, and carbonates. J. Geophys. Res., Solid Earth 93(B4), 3297–3305 (1988)

    Google Scholar 

  58. Kuentz, M., Mareschal, J.C., Lavallee, P.: Numerical estimation of electrical conductivity in saturated porous media with a 2-D lattice gas. Geophysics 65, 766–772 (2000)

    Google Scholar 

  59. Laird, D.A.: Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays Clay Miner. 47, 630–636 (1999)

    Google Scholar 

  60. Lesmes, D.P., Morgan, F.D.: Dielectric spectroscopy of sedimentary rocks. J. Geophys. Res. 106(B7), 13,329–13,346 (2001)

    Google Scholar 

  61. Letey, J., Klute, A.: Apparent mobility of potassium and chloride ions in soil and clay pastes. Soil Sci. 90, 259–265 (1960)

    Google Scholar 

  62. Logsdon, S.D., Laird, D.A.: Electrical conductivity spectra of smectites as influenced by saturating cation and humidity. Clays Clay Miner. 52, 411–420 (2004)

    Google Scholar 

  63. Logsdon, S.D., Laird, D.A.: Cation and water content effects on dipole rotation activation energy of smectites. Soil Sci. Soc. Am. J. 68, 1586–1591 (2004)

    Google Scholar 

  64. Lu, S., Ren, T., Gong, Y., Horton, R.: An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71, 8–14 (2007)

    Google Scholar 

  65. Madden, T.R.: Microcrack connectivity in rocks: a renormalization group approach to the critical phenomena of conduction and failure in crystalline rocks. J. Geophys. Res. 88, 585–592 (1983)

    Google Scholar 

  66. Mehta, B.K., Shiozawa, S., Nakano, M.: Measurement of molecular diffusion of salt in unsaturated soils. Soil Sci. 159, 115 (1995)

    Google Scholar 

  67. Merzer, M., Klemperer, S.L.: Modeling low-frequency magnetic-field precursors to the Loma Prieta Earthquake with a precursory increase in fault-zone conductivity. Pure Appl. Geophys. 150, 217–248 (1997)

    Google Scholar 

  68. Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1206 (1961)

    Google Scholar 

  69. Miyazima, S.: A new percolation model with two threshold points. Prog. Theor. Phys. Suppl. 157, 152–155 (2005)

    Google Scholar 

  70. Miyazima, S., Yamamoto, K.: Site- and bond-percolation problems for formation of macroscopic surface in a cubic lattice. J. Res. Inst. Sci. Technol. 18, 101–106 (2006)

    Google Scholar 

  71. Moldrup, P., Olesen, T., Gamst, J., Schjønning, P., Yamaguchi, T., Rolston, D.E.: Predicting the gas diffusion coefficient in repacked soil: water-induced linear reduction model. Soil Sci. Soc. Am. J. 64, 1588–1594 (2000)

    Google Scholar 

  72. Moldrup, P., Olesen, T., Schjønning, P., Yamaguchi, T., Rolston, D.E.: Predicting the gas diffusion coefficient in undisturbed soil from soil water characteristics. Soil Sci. Soc. Am. J. 64, 94–100 (2000)

    Google Scholar 

  73. Moldrup, P., Oleson, T., Komatsu, T., Schjoning, P., Rolston, D.E.: Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65, 613–623 (2001)

    Google Scholar 

  74. Moldrup, P., Yoshikawa, S., Olesen, T., Komatsu, T., Rolston, D.E.: Gas diffusivity in undisturbed volcanic ash soils: test of soil-water-characteristic-based prediction models. Soil Sci. Soc. Am. J. 67, 41–51 (2003)

    Google Scholar 

  75. Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., Rolston, D.E.: Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil. Soil Sci. Soc. Am. J. 68, 750–759 (2004)

    Google Scholar 

  76. Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., Rolston, D.E.: Predictive-descriptive models for gas and solute diffusion coefficients in variably saturated porous media coupled to pore-size distribution: I. Gas diffusivity in repacked soil. Soil Sci. 170, 843–853 (2005)

    Google Scholar 

  77. Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., Rolston, D.E.: Predictive-descriptive models for gas and solute diffusion coefficients in variably saturated porous media coupled to pore-size distribution: II. Gas diffusivity in undisturbed soil. Soil Sci. 170, 854–866 (2005)

    Google Scholar 

  78. Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., McDonald, A.M., Rolston, D.E.: Predictive-descriptive models for gas and solute diffusion coefficients in variably saturated porous media coupled to pore-size distribution: III. Inactive pore space interpretations of gas diffusivity. Soil Sci. 170, 867–880 (2005)

    Google Scholar 

  79. O’Konski, C.T.: Electrical properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Chem. Phys. 64(5), 605–619 (1960)

    Google Scholar 

  80. Olesen, S.R., Kemper, W.D.: Movement of nutrients to plant roots. In: Adv. Agronomy, vol. 30, p. 91. Academic Press, New York (1968)

    Google Scholar 

  81. Patil, A.S., King, K.M., Miller, M.H.: Self-diffusion of rubidium as influenced by soil moisture tension. Can. J. Soil Sci. 43, 44 (1963)

    Google Scholar 

  82. Pollak, M., Geballe, T.H.: Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742–1753 (1961)

    Google Scholar 

  83. Pollak, M., Pike, G.E.: AC conductivity of glasses. Phys. Rev. Lett. 28, 1449–1451 (1972)

    Google Scholar 

  84. Pollak, M., Pohl, H.A.: Dielectric dispersion in some polymers and polyelectrolytes: a model. J. Chem. Phys. 63(7), 2980–2987 (1975)

    Google Scholar 

  85. Porter, L.K., Kemper, W.D., Jackson, R.D., Stewart, B.A.: Chloride diffusion in soils as influenced by moisture content. Proc., Soil Sci. Soc. Am. 24, 460 (1960)

    Google Scholar 

  86. Römkens, M.J.M., Bruce, R.R.: Nitrate diffusivity in relation to moisture content of non-adsorbing porous media. Soil Sci. 98, 332 (1964)

    Google Scholar 

  87. Rose, W.: Volumes and surface areas of pendular rings. J. Appl. Phys. 29(4), 687–691 (1958)

    Google Scholar 

  88. Rowell, D.L., Martin, M.W., Nye, P.H.: The measurement and mechanism of ion diffusion in soil. III. The effect of moisture content and soil solution concentration on the self-diffusion of ions in soils. J. Soil Sci. 18, 204 (1967)

    Google Scholar 

  89. Sadeghi, A.M., Kissel, D.E., Cabrerra, M.L.: Estimating molecular diffusion coefficients of urea in unsaturated soil. Soil Sci. Soc. Am. J. 53, 15 (1989)

    Google Scholar 

  90. Sallam, A., Jury, W.A., Letey, J.: Measurement of gas diffusion coefficient under relatively low air-filled porosity. Soil Sci. Soc. Am. J. 48, 3–6 (1984)

    Google Scholar 

  91. Schaefer, C.E., Arands, R.R., van der Sloot, H.A., Kosson, D.S.: Prediction and experimental validation of liquid-phase diffusion resistance in unsaturated soils. J. Contam. Hydrol. 20, 145 (1995)

    Google Scholar 

  92. Schwartz, G.: A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. Presented before the division of Physical Chemistry of the American Chemical Society, 140th National Meeting, Chicago IL, Sept. 1961

    Google Scholar 

  93. Sendner, C., Horinek, D., Bocquet, L., Netz, R.R.: Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir 25(18), 10,768–10,781 (2009)

    Google Scholar 

  94. So, H.B., Nye, P.H.: The effect of bulk density, water content and soil type on the diffusion of chloride in soil. J. Soil Sci. 40, 743 (1989)

    Google Scholar 

  95. Sposito, G., Prost, R.: Structure of water adsorbed on smectites. Chem. Rev. 82, 553–573 (1982)

    Google Scholar 

  96. Springer, D.S., Loaiciga, H.A., Cullen, S.J., Everett, L.G.: Air permeability of porous materials under controlled laboratory conditions. Ground Water 36(4), 558–565 (1998)

    Google Scholar 

  97. Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54, 1–74 (1979)

    Google Scholar 

  98. Steriotis, T.A., Katsaros, F.K., Stubos, A.K., Mitropoulos, A.Ch., Kanellopoulos, N.K.: A novel experimental technique for the measurement of the single-phase gas relative permeability of porous solids. Meas. Sci. Technol. 8, 168–173 (1997)

    Google Scholar 

  99. Stonestrom, D.A.: Co-determination and comparison of hysteresis affected, parametric functions of unsaturated soils: Water content dependence of matric pressure, air trapping, and fluid permeabilities in a non-swelling soil. Ph.D. thesis, Stanford Univ, Stanford, Calif (1987)

    Google Scholar 

  100. Tang, A.M., Cui, Y.-J., Richard, G., Défossez, P.: A study on the air permeability as affected by compression of three French soils. Geoderma 162, 171–181 (2011)

    Google Scholar 

  101. Thompson, A.: Fractals in rock physics. Annu. Rev. Earth Planet. Sci. 19, 237–262 (1991)

    Google Scholar 

  102. Thompson, A.H., Katz, A.J., Krohn, C.E.: Microgeometry and transport in sedimentary rock. Adv. Phys. 36, 625 (1987)

    Google Scholar 

  103. Titov, K., Komarov, V., Tarasov, V., Levitski, A.: Theoretical and experimental study of time domain induced polarization in water-saturated sands. J. Appl. Geophys. 50, 417–433 (2002)

    Google Scholar 

  104. Touma, J., Vauclin, M.: Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transp. Porous Media 1, 27–55 (1986)

    Google Scholar 

  105. Tuli, A., Hopmans, J.W.: Effect of degree of fluid saturation on transport coefficients in disturbed soils. Eur. J. Soil Sci. 55(1), 147–164 (2004)

    Google Scholar 

  106. Unsal, E., Dane, J.H., Dozier, G.V.: A genetic algorithm for predicting pore geometry based on air permeability measurements. Vadose Zone J. 4, 389–397 (2005)

    Google Scholar 

  107. Verboven, P., Kerkhofs, G., Mebatsion, H.K., Ho, Q.T., Temst, K., Wevers, M., Cloetens, P., Nicolaï, B.M.: Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography. Plant Physiol. 147, 518–527 (2008)

    Google Scholar 

  108. Warncke, D.D., Barber, S.A.: Diffusion of zinc in soil I. The influence of soil moisture. Soil Sci. Soc. Am. J. 36, 39 (1972)

    Google Scholar 

  109. Werner, D., Grathwohl, P., Hoehener, P.: Review of field methods for the determination of the tortuosity and effective gas-phase diffusivity in the vadose zone. Vadose Zone J. 3, 1240–1248 (2004)

    Google Scholar 

  110. Williams, G.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, A., Ewing, R., Ghanbarian, B. (2014). Other Transport Properties of Porous Media. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-03771-4_7

Download citation

Publish with us

Policies and ethics