Skip to main content

Hydraulic and Electrical Conductivity: Conductivity Exponents and Critical Path Analysis

  • Chapter
Percolation Theory for Flow in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 880))

  • 2742 Accesses

Abstract

The saturation dependences of the electrokinetic current, the electrical conductivity, and the hydraulic conductivity are investigated by applying concepts from critical path analysis to the pore-size variability and universal scaling from percolation theory to the topological inputs from phase continuity. This division makes it possible to define ranges of saturation for which the pore-size or the topological effects on the given property dominate. We find that in natural media the hydraulic conductivity is predominantly influenced by the pore-size distribution, the electrical conductivity is usually controlled by topology, and there is no input from the pore-size distribution to the electrokinetic current. These calculations are based on a particular model of the medium as well as scaling of flow appropriate from Poiseuille’s law. Qualitatively similar, but quantitatively different conclusions result from different model inputs. It is shown that previously derived non-universal scaling results for the conductivity are obtained from critical path analysis in a limiting case, proving that the treatment is a generalization of known physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Hassanein, Z.S., Benson, C.H., Blotz, L.R.: Electrical resistivity of compacted clays. J. Geotech. Eng. 122, 397–406 (1996)

    Article  Google Scholar 

  2. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Mech. Eng. 146, 54–61 (1942)

    Google Scholar 

  3. Balberg, I.: Recent developments in continuum percolation. Philos. Mag. B 30, 991–1003 (1987)

    Article  Google Scholar 

  4. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  5. Berkowitz, B., Balberg, I.: Percolation theory and its application to groundwater hydrology. Water Resour. Res. 29, 775–794 (1993)

    Article  Google Scholar 

  6. Bernabé, Y.: Streaming potential in heterogeneous network. J. Geophys. Res. 103, 20827–20841 (1998)

    Article  Google Scholar 

  7. Binley, A., Winship, P., Middleton, R., Pokar, M., West, J.L.: Observation of seasonal dynamics in the vadose zone using borehole radar and resistivity. In: Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems, SAGEEP, March 4–7, 2001

    Google Scholar 

  8. Binley, A., Winship, P., West, L.J., Pokar, M., Middleton, R.: Seasonal variation of moisture content in unsaturated sandstone inferred for borehole radar and resistivity profiles. J. Hydrol. 267, 160–172 (2002)

    Article  Google Scholar 

  9. Bird, N.R.A., Perrier, E., Rieu, M.: The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci. 51, 55–63 (2000)

    Article  Google Scholar 

  10. Bittelli, M., Campbell, G.S., Flury, M.: Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J. 63, 782–788 (1999)

    Article  Google Scholar 

  11. Buckingham, E.: Studies on the movement of soil moisture. Bul. No. 38, Bureau of Soils, USDA, Washington, D.C. (1907)

    Google Scholar 

  12. Burdine, N.T.: Relative permeability calculations from pore-size distribution data. Petrol. Trans. Am. Inst. Min. Eng. 198, 71–77 (1953)

    Google Scholar 

  13. Bussian, A.E.: Electrical conductance in a porous medium. Geophysics 48, 1258–1268 (1983)

    Article  Google Scholar 

  14. Carman, P.C.: Flow of Gases Through Porous Media. Butterworths, London (1956)

    Google Scholar 

  15. Cassiani, G., Dalla, E., Brovelli, A., Pitea, D.: Pore-scale modeling of electrical conductivity in unsaturated sandstones. In: Computational Methods in Water Resources: Proceedings of the XVth International Conference, Chapel Hill, NC, USA, June 13–17, 2004, pp. 235–246 (2004)

    Chapter  Google Scholar 

  16. Cremers, A., Laudelout, H.: Note on the “isoconductivity value” of clay gels. Soil Sci. 100, 298–299 (1965)

    Article  Google Scholar 

  17. Cremers, A., van Loon, J., Laudelout, H.: Geometry effects for specific electrical conductance in clays and soils. In: Proc. Internat. Conf. Clays Clay Miner 14th, Ghent, Belgium, pp. 149–162 (1966)

    Chapter  Google Scholar 

  18. Davis H.T., Novy, R.A., Scriven, L.E., Toledo, P.G.: Fluid distribution and transport in porous media at low wetting phase saturations. J. Phys. Condens. Matter 2, SA457–SA464 (1990)

    Article  Google Scholar 

  19. Ewing, R.P., Hunt, A.G.: Dependence of the electrical conductivity on saturation in real porous media. Vadose Zone J. 5, 731–741 (2006)

    Article  Google Scholar 

  20. Feng, S., Halperin, B.I., Sen, P.N.: Transport properties of continuum systems near the percolation threshold. Phys. Rev. B 35, 197 (1987)

    Article  Google Scholar 

  21. Freeman, E.J.: Fractal geometries applied to particle size distributions and related moisture retention measurements at Hanford, Washington. M.A. Thesis, University of Idaho (1995)

    Google Scholar 

  22. Friedman, S.P., Seaton, N.A.: Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks. Water Resour. Res. 34, 1703 (1998)

    Article  Google Scholar 

  23. Ghanbarian-Alavijeh, B., Hunt, A.G.: Unsaturated hydraulic conductivity in porous media: percolation theory. Geoderma 187–188, 77–84 (2012)

    Article  Google Scholar 

  24. Hilfer, R.: Geometric and dielectric characterization of porous media. Phys. Rev. 44, 60–75 (1991)

    Article  Google Scholar 

  25. Hillel, D.: Environmental Soil Physics. Academic Press, San Diego (1998)

    Google Scholar 

  26. Hunt, A.G.: AC hopping conduction: perspective from percolation theory. Philos. Mag. B 81, 875–913 (2001)

    Google Scholar 

  27. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conductances. Adv. Water Resour. 24(3,4), 279–307 (2001)

    Article  Google Scholar 

  28. Hunt, A.G.: Continuum percolation theory and Archie’s law. Geophys. Res. Lett. 31(19), L19503 (2004)

    Article  Google Scholar 

  29. Hunt, A.G.: Percolative transport and fractal porous media. Chaos Solitons Fractals 19, 309–325 (2004)

    Article  Google Scholar 

  30. Hunt, A.G.: Continuum percolation theory for water retention and hydraulic conductivity of fractal soils: 1. Estimation of the critical volume fraction for percolation. Adv. Water Resour. 27, 175–183 (2004)

    Article  Google Scholar 

  31. Hunt, A.G.: A note comparing van Genuchten and percolation theoretical formulations of the hydraulic properties of unsaturated media. Vadose Zone J. 3, 1483–1488 (2004)

    Google Scholar 

  32. Hunt, A.G.: Continuum percolation theory for transport properties in porous media. Philos. Mag. 85, 3409–3434 (2005)

    Article  Google Scholar 

  33. Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porous media: comparison with examples from the Hanford Site. Adv. Water Resour. 25, 129–146 (2002)

    Article  Google Scholar 

  34. Hunt, A.G., Gee, G.W.: Water retention of fractal soil models using continuum percolation theory: tests of hanford site soils. Vadose Zone J. 1, 252–260 (2002)

    Google Scholar 

  35. Hunt, A., Gershenzon, N., Bambakidis, G.: Pre-seismic electromagnetic phenomena in the framework of percolation and fractal theories. Tectonophysics 431, 23–32 (2007)

    Article  Google Scholar 

  36. Hunt, A.G., Ewing, R.P., Horton, R.: What’s wrong with soil physics. Soil Sci. Soc. Am. J. (2013). doi:10.2136/sssaj2013.01.0020

    Google Scholar 

  37. Kechavarzi, C., Soga, K.: Determination of water saturation using miniature resistivity probes during intermediate scale and centrifuge multiphase flow laboratory experiments. Geotech. Test. J. 25, 95–103 (2002)

    Article  Google Scholar 

  38. Khaleel, R., Freeman, E.J.: Variability and scaling of hydraulic properties for 200 area soils. Hanford Site, Westinghouse Hanford Company Report WHC-EP-0883 (1995)

    Google Scholar 

  39. Klein, K.A., Santamarina, J.C.: Electrical conductivity in soils: underlying phenomena. J. Envir. Eng. Geophys. 8, 263–273 (2003)

    Article  Google Scholar 

  40. Kozeny, J.: Über Kapillare Leitung des Wasssers im Boden. Sitzungsber. Adak. Wiss. Wien 136, 271–306 (1927)

    Google Scholar 

  41. Krohn, C.E., Thompson, A.H.: Fractal sandstone pores: automated measurements using scanning-electron-microscope images. Phys. Rev. B 33, 6366–6374 (1986)

    Article  Google Scholar 

  42. Kuentz, M., Mareschal, J.C., Lavallee, P.: Numerical estimation of electrical conductivity in saturated porous media with a 2-D lattice gas. Geophysics 65, 766–772 (2000)

    Article  Google Scholar 

  43. Landa, E.R., Nimmo, J.R.: The life and scientific contributions of Lyman J. Briggs. Soil Sci. Soc. Am. J. 67, 681–693 (2003)

    Article  Google Scholar 

  44. Leij, F.J., Alves, W.J., van Genuchten, Th. Williams J. R, M.: Unsaturated Soil Hydraulic Database, UNSODA 1.0 user’s manual. Rep. EPA/600/R96/095, USEPA, Ada, OK (1996)

    Google Scholar 

  45. Letey, J., Klute, A.: Apparent mobility of potassium and chloride ions in soil and clay pastes. Soil Sci. 90, 259–265 (1960)

    Article  Google Scholar 

  46. Lopez, E., Buldyrev, S.V., Dokholyan, N.V., Goldmakher, L., Havlin, S., King, P.R., Stanley, H.E.: Postbreakthrough behavior in flow through porous media. Phys. Rev. E 67, 056314 (2003), 16 pp.

    Article  Google Scholar 

  47. Mallory, K.: Active subclusters in percolative hopping transport. Phys. Rev. B 47, 7819–7826 (1993)

    Article  Google Scholar 

  48. Mendelson, K.S., Cohen, M.H.: The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics 47, 257–262 (1982)

    Article  Google Scholar 

  49. Miller, E.E., Miller, R.W.: Physical theory for capillary flow phenomena. J. Appl. Phys. 27, 324–332 (1956)

    Article  Google Scholar 

  50. Mori, Y., Hopmans, J.W., Mortensen, A.P., Kluitenberg, G.J.: Multi-functional heat pulse probe for the simultaneous measurement of soil water content, solute concentration, and heat transport parameters. Vadose Zone J. 2, 561–571 (2003)

    Google Scholar 

  51. Mualem, Y.: A Catalogue of the Hydraulic Properties of Unsaturated Soils. Res. Proj. No. 442, Technion, Israel Institute of Technology, Haifa (1976)

    Google Scholar 

  52. Mualem, Y.: Hysteretical models for prediction of hydraulic conductivity in unsaturated porous media. Water Resour. Res. 12, 1248–1254 (1976)

    Article  Google Scholar 

  53. Narasimhan, T.N.: Central ideas of Buckingham, 1906: a century later. Vadose Zone J. 6, 687–693 (2007)

    Article  Google Scholar 

  54. Patnode, H.W., Wyllie, M.R.J.: The presence of conductive solids in reservoir rocks as a factor in electric log interpretation. Trans. AIME 189, 47–52 (1950)

    Google Scholar 

  55. Perrier, E., Bird, N., Rieu, M.: Generalizing the fractal model of soil structure: the pore-solid fractal approach. Geoderma 88, 137–164 (1999)

    Article  Google Scholar 

  56. Priesack, K., Durner, W.: Closed-form expression for the multi-modal unsaturated conductivity function. Vadose Zone J. 5, 121–124 (2006)

    Article  Google Scholar 

  57. Ren, T., et al.: unpublished data (1999)

    Google Scholar 

  58. Rhoades, J.D., Raats, P.A.C., Prather, R.J.: Effects of liquid-phase electric conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 40, 651–655 (1976)

    Article  Google Scholar 

  59. Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties I. Theory. Soil Sci. Soc. Am. J. 55, 1231 (1991)

    Article  Google Scholar 

  60. Rinaldi, V.A., Cuestas, G.A.: Ohmic conductivity of a compacted silty clay. J. Geotech. Geoenviron. Eng. 128, 824–835 (2002)

    Article  Google Scholar 

  61. Roberts, J.J., Lin, W.: Electrical properties of partially saturated Topopah Spring tuff. Water distribution as a function of saturation. Water Resour. Res. 33, 577–587 (1997)

    Article  Google Scholar 

  62. Rockhold, M.L., Fayer, M.J., Gee, G.W.: Characterization of unsaturated hydraulic conductivity at the Hanford Site. PNL 6488, Pacific Northwest National Laboratory, Richland, WA 99352 (1988)

    Google Scholar 

  63. Sahimi, M.: Flow phenomena in rocks—from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993)

    Article  Google Scholar 

  64. Scher, H., Zallen, R.: Critical density in percolation processes. J. Chem. Phys. 53, 3759 (1970)

    Article  Google Scholar 

  65. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor and Francis, London (1994)

    Google Scholar 

  66. Surkov, V.V., Tanaka, H.: Electrokinetic effect in fractal pore media as seismoelectric phenomena. In: Dimri, V.P. (ed.) Fractal Behavior of the Earth System. Springer, Heidelberg (2005)

    Google Scholar 

  67. Thompson, A.H., Katz, A.J., Krohn, C.E.: Microgeometry and transport in sedimentary rock. Adv. Phys. 36, 625 (1987)

    Article  Google Scholar 

  68. Toledo, P.G., Novy, R.A., Davis, H.T., Scriven, L.E.: On the transport properties of porous media at low water content. In: Van Genuchten, M.T., Leij, F.J., Lund, L.J. (eds.) Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, University of California, Riverside (1992)

    Google Scholar 

  69. Tuli, A., Hopmans, J.W.: Effect of degree of saturation on transport coefficients in disturbed soils. Eur. J. Soil Sci. 55, 147–164 (2004)

    Article  Google Scholar 

  70. Tyler, S.W., Wheatcraft, S.W.: Fractal processes in soil water retention. Water Resour. Res. 26, 1045–1054 (1990)

    Google Scholar 

  71. van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  72. Vyssotsky, V.A., Gordon, S.B., Frisch, H.L., Hammersley, J.M.: Critical percolation probabilities (bond problem). Phys. Rev. 123, 1566–1567 (1961)

    Article  Google Scholar 

  73. Wang, Y., Ma, J., Zhang, Y., Zhao, M., Edmonds, W.M.: A new theoretical model accounting for film flow in unsaturated porous media. Water Resour. Res. (2013). doi:10.1002/wrcr.20390

    Google Scholar 

  74. Wu, Q., Borkovec, M., Sticher, H.: On particle-size distributions in soils. Soil Sci. Soc. Am. J. 57, 883–890 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Problems

  1. 6.1

    Prove that r c is the same for electrical and hydraulic conductivities and draw an analogy to Problem 3.1 in Chap. 3, which asked to show that the value obtained for R c was independent of whether one obtained r c first and substituted into the equation for R(r), or whether one integrated over R directly.

  2. 6.2

    Consider a log-normal distribution of pore sizes, but assume as in a fractal model that all pores have the same shapes (this is a necessary assumption in a fractal model, but only an assumption of convenience, otherwise). Derive equivalent expressions for the saturation dependence of the hydraulic and electrical conductivity using critical path analysis and find the moisture contents at which the critical path analysis must be replaced by percolation scaling. These exercises may be performed numerically. Compare the ranges of parameter space (D p, ϕ), for which Archie’s law may be reasonably derived from percolation theory determined from the log-normal and the power-law distributions. Does a log-normal distribution tend to make Archie’s law more or less widely applicable than is the case for a power-law distribution of pore sizes?

  3. 6.3

    Graphically represent the apparent power μ (ϕ) of the porosity in Archie’s law when the pore size distribution modifies its value from 2 in the cases that (a) the ratio r 0/r m is held constant and (b) the fractal dimensionality is held constant. You will need to keep in mind that in either case μ is dln(σ)/dln(ϕ)=(ϕ/σ)/.

Appendix: Calculation of Water Retention and Unsaturated Hydraulic Conductivity for Pore-Solid Fractal Model with Two Fractal Regimes

6.2.1 Water Retention Curve

We assume that the pore-size distribution of soils follows the pore-solid fractal (PSF) approach proposed by Perrier et al. [55]. This model combined with percolation theory has been successfully applied to model unsaturated hydraulic conductivity of soils with different textures [23]. The continuous probability density function, W(r), of pores consistent with the Hunt and Gee [33] analogy would be:

$$ W ( r ) = \beta \frac{3 - D}{r_{\max}^{3 - D}}r^{ - 1 - D},\quad r_{\min} < r < r_{\max} $$
(6.48)

where β=p/(p+s) in which p and s are the pore and solid fractions [55], respectively, D is the pore-solid interface fractal dimension, r is the pore radius (r∝1/h where h is the tension head), and r min and r max are the smallest and largest pore radii, respectively.

Figure 6.28 shows a schematic of a soil water retention curve with two fractal regimes. The first regime covers mostly the large (frequently structural) pores, and the second regime includes the small (textural) pores. The water content at the cross-over point is denoted by θ x which is equal to the porosity of the second regime ϕ 2.

Fig. 6.28
figure 28

Depiction of two separate fractal regimes in a soil water retention curve and corresponding definitions

In a porous medium having a probability density function that scales differently in two different regimes, e.g., D 1 and D 2 (Fig. 6.28), the total porosity may be found by integrating r 3 W(r) between r min and r max to obtain

$$\begin{aligned} \phi =& \phi _{1} + \phi _{2} = \beta_{1}\frac{3 - D_{1}}{r_{\max}^{3 - D_{1}}}\int_{r_{\mathrm{x}}}^{r_{\max}} r^{3}r^{ - 1 - D_{1}}dr + \beta_{2}\frac{3 - D_{2}}{r_{\mathrm{x}}^{3 - D_{2}}}\int_{r_{\min}}^{r_{\mathrm{x}}} r^{3}r^{ - 1 - D_{2}}dr \\ =& \beta_{1} \biggl[ 1 - \biggl( \frac{r_{\mathrm{x}}}{r_{\max}} \biggr)^{3 - D_{1}} \biggr] + \beta_{2} \biggl[ 1 - \biggl( \frac{r_{\min}}{r_{\mathrm{x}}} \biggr)^{3 -D_2}\biggr] \end{aligned}$$
(6.49)

where r x is the pore radius at the cross-over point where the fractal behavior of the medium changes from regime 1 to regime 2, and D 1 and D 2 are the pore-solid interface fractal dimension of the first and second regimes, respectively.

The water content of pores with radii less than or equal to r in the second regime (h x<h<h max) is determined as follows (r<r x):

$$ \theta = \beta_{2}\frac{3 - D_{2}}{r_{\mathrm{x}}^{3 - D_{2}}}\int_{r_{\min}}^{r} r^{3}r^{ - 1 - D_{2}}dr = \beta_{2} \biggl[ \biggl( \frac{r}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} - \biggl( \frac{r_{\min}}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} \biggr] $$
(6.50)

Likewise, the water content of pores with radii less than or equal to r in the first regime (h min<h<h x) would be (r>r x):

$$\begin{aligned} \theta =& \beta_{1}\frac{3 - D_{1}}{r_{\max}^{3 - D_{1}}}\int_{r_{\mathrm{x}}}^{r} r^{3}r^{ - 1 - D_{1}}dr + \beta_{2}\frac{3 - D_{2}}{r_{\mathrm{x}}^{3 - D_{2}}}\int_{r_{\min}}^{r_{\mathrm{x}}} r^{3}r^{ - 1 - D_{2}}dr \\ =& \phi _{2} + \beta_{1} \biggl[ \biggl( \frac{r}{r_{\max}} \biggr)^{3 - D_{1}} - \biggl( \frac{r_{\mathrm{x}}}{r_{\max}} \biggr)^{3 - D_{1}} \biggr] \end{aligned}$$
(6.51)

Combining Eqs. (6.50) and (6.51) with the capillary equation gives the following piecewise soil water retention curve model:

$$\begin{aligned} \theta = \left \{ \begin{array}{l} \phi \quad h < h_{\min}\\ \phi _{2} + \beta_{1} \bigl[ \bigl( \frac{h}{h_{\min}} \bigr)^{D_{1} - 3} - \bigl( \frac{h_{\mathrm{x}}}{h_{\min}} \bigr)^{D_{1} - 3} \bigr] = \phi - \beta_{1} \bigl[ 1 - \bigl( \frac{h}{h_{\min}} \bigr)^{D_{1} - 3} \bigr]\\ \quad h_{\min} < h < h_{\mathrm{x}} \\ \beta_{2} \bigl[ \bigl( \frac{h}{h_{\mathrm{x}}} \bigr)^{D_{2} - 3} - \bigl( \frac{h_{\min}}{h_{\mathrm{x}}} \bigr)^{D_{2} - 3} \bigr] = \phi _{2} - \beta_{2} \bigl[ 1 - \bigl( \frac{h}{h_{\mathrm{x}}} \bigr)^{D_{2} - 3} \bigr] \quad h_{\mathrm{x}} < h < h_{\max} \end{array} \right . \end{aligned}$$
(6.52)

6.2.2 Unsaturated Hydraulic Conductivity

Following Ghanbarian-Alavijeh and Hunt [23], we use critical path analysis combined with the PSF model to find the critical pore radius for percolation for saturated and unsaturated conditions. Generally, there are two possibilities.

6.2.2.1 Possibility 1: θ t<ϕ 1

Using the pore-solid fractal approach, we define the critical volume content of percolation θ t from critical path analysis for saturated conditions (θ=ϕ) as follows:

$$ \theta_{\mathrm{t}} = \frac{p_{1}}{p_{1} + s_{1}}\frac{3 - D_{1}}{r_{\max}^{3 - D_{1}}}\int _{r_{\mathrm{c}} ( \theta = \phi )}^{r_{\max}} r^{3}r^{ - 1 - D_{1}}dr = \beta_{1} \biggl[ 1 - \biggl( \frac{r_{\mathrm{c}} ( \theta = \phi )}{r_{\max}} \biggr)^{3 - D_{1}} \biggr] $$
(6.53)

Solution of Eq. (6.53) combined with Eq. (6.52) for r c(θ=ϕ) gives

$$ r_{\mathrm{c}} ( \theta = \phi ) = r_{\max} \biggl[ \frac{\beta_{1} - \theta_{\mathrm{t}}}{\beta_{1}} \biggr]^{\frac{1}{3 - D_{1}}},\quad \theta_{\mathrm{t}} < \phi _{1} $$
(6.54)

For unsaturated condition as we show in Fig. 6.29, three cases are possible:

  1. (I)

    θθ t>ϕ 2 and θ>ϕ 2 (see Fig. 6.29)

    Fig. 6.29
    figure 29

    Three distinct ranges of moisture content that control the determination of r c when θ t is less than either partial porosity

    The critical water content for percolation θ t would be

    $$ \theta_{\mathrm{t}} = \beta_{1}\frac{3 - D_{1}}{r_{\max}^{3 - D_{1}}}\int _{r_{\mathrm{c}} ( \theta )}^{r} r^{3}r^{ - 1 - D_{1}}dr = \beta_{1} \biggl[ \biggl( \frac{r}{r_{\max}} \biggr)^{3 - D_{1}} - \biggl( \frac{r_{\mathrm{c}} ( \theta )}{r_{\max}} \biggr)^{3 - D_{1}} \biggr] $$
    (6.55)

    Rewriting Eq. (6.55) combined with Eq. (6.52) for r c(θ) yields

    $$ r_{\mathrm{c}} ( \theta ) = r_{\max} \biggl[ \frac{\beta_{1} - \phi + \theta - \theta_{\mathrm{t}}}{\beta_{1}} \biggr]^{\frac{1}{3 - D_{1}}} $$
    (6.56)
  2. (II)

    θθ t<ϕ 2 and θ>ϕ 2 (see Fig. 6.29)

    $$ \theta_{\mathrm{t}} = \beta_{2} \biggl[ 1 - \biggl( \frac{r_{\mathrm{c}} ( \theta )}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} \biggr] + \beta_{1} \biggl[ \biggl( \frac{r}{r_{\max}} \biggr)^{3 - D_{1}} - \biggl( \frac{r_{\mathrm{x}}}{r_{\max}} \biggr)^{3 - D_{1}} \biggr] $$
    (6.57)

    Solving Eq. (6.57) combined with Eq. (6.52) for r c(θ) results

    $$ r_{\mathrm{c}} ( \theta ) = r_{\mathrm{x}} \biggl[ \frac{\beta_{2} - \phi _{2} + \theta - \theta_{\mathrm{t}}}{\beta_{2}} \biggr]^{\frac{1}{3 -D_{2}}} $$
    (6.58)

    in which \(r_{\mathrm{x}} = r_{\max} [ \frac{\beta_{1} - \phi _{1}}{\beta_{1}} ]^{1 / ( 3 - D_{1} )}\).

  3. (III)

    θθ t<ϕ 2 and θ<ϕ 2 (see Fig. 6.29)

    $$ \theta_{\mathrm{t}} = \beta_{2} \biggl[ \biggl( \frac{r}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} - \biggl( \frac{r_{\mathrm{c}} ( \theta )}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} \biggr] $$
    (6.59)

    Solution of Eq. (6.59) combined with Eq. (6.52) for r c(θ) gives

    $$ r_{\mathrm{c}} ( \theta ) = r_{\mathrm{x}} \biggl[ \frac{\beta_{2} - \phi _{2} + \theta - \theta_{\mathrm{t}}}{\beta_{2}} \biggr]^{\frac{1}{3 - D_{2}}} $$
    (6.60)

6.2.2.2 Possibility 2: θ t>ϕ 1

In this case, the critical water content for percolation θ t at saturation (θ=ϕ) is

$$ \theta_{\mathrm{t}} = \beta_{2} \biggl[ 1 - \biggl( \frac{r_{\mathrm{c}} ( \theta = \phi )}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} \biggr] + \phi _{1} $$
(6.61)

Rewriting Eq. (6.61) combined with Eq. (5.5) for r c(θ=ϕ) gives

$$ r_{\mathrm{c}} ( \theta = \phi ) = r_{\mathrm{x}} \biggl[ \frac{\beta_{2} - \theta_{\mathrm{t}} + \phi _{1}}{\beta_{2}} \biggr]^{\frac{1}{3 - D_{2}}},\quad \theta_{\mathrm{t}} > \phi _{1} $$
(6.62)

As we show in Fig. 6.30, there are two cases possible for the unsaturated condition:

  1. (I)

    θθ t<ϕ 2 and θ>ϕ 2 (see Fig. 6.30)

    $$ \theta_{\mathrm{t}} = \beta_{2} \biggl[ 1 - \biggl( \frac{r_{\mathrm{c}} ( \theta )}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} \biggr] + \theta - \phi _{2} $$
    (6.63)

    Solution of Eq. (6.63) for r c(θ) gives

    $$ r_{\mathrm{c}} ( \theta ) = r_{\mathrm{x}} \biggl[ \frac{\beta_{2} - \phi _{2} + \theta - \theta_{\mathrm{t}}}{\beta_{2}} \biggr]^{\frac{1}{3 - D_{2}}} $$
    (6.64)
    Fig. 6.30
    figure 30

    Two separate distinct ranges of moisture contents that guide determination of r c when θ t is larger than the porosity associated with the upper fractal regime

  2. (II)

    θθ t<ϕ 2 and θ<ϕ 2 (see Fig. 6.30)

    $$ \theta_{\mathrm{t}} = \beta_{2} \biggl[ \biggl( \frac{r}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} - \biggl( \frac{r_{\mathrm{c}} ( \theta )}{r_{\mathrm{x}}} \biggr)^{3 - D_{2}} \biggr] $$
    (6.65)

    Solution of Eq. (6.65) for r c(θ) yields

    $$ r_{\mathrm{c}} ( \theta ) = r_{\mathrm{x}} \biggl[ \frac{\beta_{2} - \phi _{2} + \theta - \theta_{\mathrm{t}}}{\beta_{2}} \biggr]^{\frac{1}{3 -D_{2}}} $$
    (6.66)

    In fact, when θ t>ϕ 1, r c(θ) follows the same function of water content (Eqs. (6.64) and (6.66)) for both θ>ϕ 2 and θ<ϕ 2.

To model unsaturated hydraulic conductivity, we invoke Poiseuille’s law for self-similar fractal porous media in which the hydraulic conductance g of a given pore is proportional to r 4 and the inverse of the pore length (l), also assumed to be proportional to r(lr). Therefore, g is a function of pore radius cubed, r 3 [23, 27]. Since the hydraulic conductivity K(θ) is directly proportional to the critical hydraulic conductance g c, the unsaturated hydraulic conductivity normalized with the saturated hydraulic conductivity (as the reference point) is given by

$$ \frac{K ( \theta )}{K_{\mathrm{s}}} = \frac{g_{\mathrm{c}} ( \theta )}{g_{\mathrm{c}} ( \theta = \phi )} = \frac{r_{\mathrm{c}}^{3} ( \theta )}{r_{\mathrm{c}}^{3} ( \theta = \phi )} $$
(6.67)

Thus, the new piecewise unsaturated hydraulic conductivity model for the two possibilities outlines above would be

6.2.2.3 Possibility 1: θ t<ϕ 1

$$ \frac{K ( \theta )}{K_{\mathrm{s}}} = \left \{ \begin{array}{l} \bigl[\frac{\beta_{1} - \phi + \theta - \theta_{\mathrm{t}}}{\beta_{1} - \theta_{\mathrm{t}}} \bigr]^{3 / ( 3 - D_{1} )}, \quad \theta - \theta_{\mathrm{t}} > \phi _{2}, \theta > \phi _{2} \\ \bigl( \frac{\beta_{1}^{3 / ( 3 - D_{1} )}}{\beta_{2}^{3 / ( 3 - D_{2} )}} \bigr) \bigl( \frac{\beta_{1} - \phi _{1}}{\beta_{1}} \bigr)^{3 / ( 3 - D_{1} )}\frac{ [ \beta_{2} - \phi _{2} + \theta - \theta_{\mathrm{t}} ]}{ [ \beta_{1} - \theta_{\mathrm{t}} ]^{3 / ( 3 - D_{1} )}}^{3 / ( 3 - D_{2} )}, \\ \quad \theta - \theta_{\mathrm{t}} < \phi _{2},\theta > \phi _{2},\theta < \phi _{2} \end{array} \right . $$
(6.68)

6.2.2.4 Possibility 2: θ t>ϕ 1

$$ \frac{K ( \theta )}{K_{\mathrm{s}}} = \biggl[ \frac{\beta_{2} - \phi _{2} + \theta - \theta_{\mathrm{t}}}{\beta_{2} + \phi _{1} - \theta_{\mathrm{t}}} \biggr]^{3 / ( 3 - D_{2} )} $$
(6.69)

If one assumes that the percolation threshold is equal to 0, the unsaturated hydraulic conductivity model proposed above (Eqs. (6.68) and (6.69)) is simplified to

$$ \frac{K ( \theta )}{K_{\mathrm{s}}} = \left \{ \begin{array}{l@{\quad}l} \bigl[\frac{\beta_{1} - \phi + \theta}{\beta_{1}} \bigr]^{3 / ( 3 - D_{1} )}, & \theta > \phi _{2} \\ \bigl( \frac{\beta_{1}^{3 / ( 3 - D_{1} )}}{\beta_{2}^{3 / ( 3 - D_{2} )}} \bigr) \bigl( \frac{\beta_{1} - \phi _{1}}{\beta_{1}} \bigr)^{3 / ( 3 - D_{1} )}\frac{ [ \beta_{2} - \phi _{2} + \theta ]}{\beta_{1}^{3 / ( 3 - D_{1} )}}^{3 / ( 3 - D_{2} )}, & \theta < \phi _{2} \end{array} \right . $$
(6.70)

In all comparisons that we have made with experiment, we have found that θ t=0 was appropriate, for reasons that we explain in the text. Nonetheless, in principle one should refer to Eqs. (6.68) and (6.69) for more general results. As long as both regimes are associated with textural pores, the simplest assumption should be used, namely that θ t is independent of moisture content. In this case one would normally expect θ t to be finite. But in the case that structural and textural pores are present, it must be considered possible that θ t takes on a different value for the two types of pores. If θ t is large, it is important that the results we obtain here would not extend to low saturations, where universal scaling of the hydraulic conductivity would be expected. But when the percolation threshold occurs at zero moisture content, the range of moisture contents at which universal scaling should be observed will typically be 0<θ<0.1, and is often even more restricted. In the case that θ t=0 we could neglect this complication, since the experimenters never explored moisture contents sufficiently low that universal scaling of the hydraulic conductivity would be encountered.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, A., Ewing, R., Ghanbarian, B. (2014). Hydraulic and Electrical Conductivity: Conductivity Exponents and Critical Path Analysis. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-03771-4_6

Download citation

Publish with us

Policies and ethics