Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 880))

  • 2718 Accesses

Abstract

A suite of papers addressing various “types” of tortuosity is shown to be explained by the same simple spatial tortuosity function from percolation theory for which the parameters are obtained from simulation or experiment and percolation theory. Use of cluster statistics of percolation theory in the context of critical path analysis (which produced verifiable hydraulic conductivity distributions in Chap. 10) together with temporal tortuosity concepts from publications of Eugene Stanley’s group is shown to generate a distribution of solute arrival times in agreement with experiment and without appeal to adjustable parameters. The scaling of typical arrival times with system size, which resembles a power law over many decades of time, matches results from early experiments on dispersive transport in amorphous semiconductors and polymers and gives a physical basis for the observed power (ca. 1.64 in polymers and 1.87 in amorphous semiconductors). The solute velocity is thus implied also to follow a power-law, at least approximately, and the resulting time dependence is shown to map the dependence of chemical reaction rates in porous media over 10 orders of magnitude of time scale. Furthermore, the predicted range of dispersivity values is found to agree with experiment (over 2200 individual cases) over 10 orders of magnitude of length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggelopoulos, C.A., Tsakiroglou, C.D.: The longitudinal dispersion coefficient of soils as related to the variability of local permeability. Water Air Soil Pollut. 185, 223–237 (2007)

    Google Scholar 

  2. Algeo, T.J., Scheckler, S.E.: Terrestrial-marine teleconnections in the Devonian: links between the evolution of landplants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 353, 113–128 (1998)

    Google Scholar 

  3. Ambegaokar, V.N., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612–2621 (1971)

    Google Scholar 

  4. Anderson, R.S., Anderson, S.P.: Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge Press, New York (2010)

    Google Scholar 

  5. Araujo, A.D., Moreira, A.A., Filho, R.N.C., Andrade, J.S. Jr.: Statistics of the critical percolation backbone with spatial long-range correlations. Phys. Rev. E 67, 027102 (2003)

    Google Scholar 

  6. Aronofsky, J.S., Heller, J.P.: A diffusion model to explain mixing of flowing miscible fluids in porous media. Trans. AIME 210, 345–349 (1957)

    Google Scholar 

  7. Arya, A., Hewett, T.A., Larson, R.G., Lake, L.W.: Dispersion and reservoir heterogeneity. SPE Reserv. Eng. 3, 139–148 (1988)

    Google Scholar 

  8. Balberg, I.: Recent developments in continuum percolation. Philos. Mag. B 30, 991–1003 (1987)

    Google Scholar 

  9. Barrande, M., Bouchet, R., Denoyel, R.: Tortuosity of porous particles. Anal. Chem. 79, 9115–9121 (2007)

    Google Scholar 

  10. Barthelemy, M., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Scaling and finite-size effects for the critical backbone. Fractals 11(supplement), 19–27 (2003)

    Google Scholar 

  11. Baumann, T., Müller, S., Niessner, R.: Migration of dissolved heavy metal compounds and PCP in the presence of colloids through a heterogeneous calcareous gravel and a homogeneous quartz sand—pilot scale experiments. Water Res. 36, 1213 (2002)

    Google Scholar 

  12. Baumann, T., Toops, L., Niessner, R.: Colloid dispersion on the pore scale. Water Res. 44, 1246–1254 (2010)

    Google Scholar 

  13. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  14. Becker M. W, M.W., Shapiro, A.M.: Tracer transport in fractured crystalline rock: evidence of nondiffusive breakthrough tailing. Water Resour. Res. 36, 1677–1686 (2000)

    Google Scholar 

  15. Berkowitz, B., Scher, H.: On characterization of anomalous dispersion in porous and fractured media. Water Resour. Res. 31, 1461–1466 (1995)

    Google Scholar 

  16. Berkowitz, B., Cortis, A., Dentz, M., et al.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2), RG2003 (2006)

    Google Scholar 

  17. Bernabé, Y., Bruderer, C.: Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J. Geophys. Res. 103, 513 (1998)

    Google Scholar 

  18. Berner, R.A.: Weathering, plants, and the long-term carbon-cycle. Geochim. Cosmochim. Acta 56(8), 3225–3231 (1992)

    Google Scholar 

  19. Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42(1), W01202 (2006)

    Google Scholar 

  20. Bijeljic, B., Muggeridge, A., Blunt, M.J.: Pore-scale modeling of longitudinal dispersion. Water Resour. Res. 40(11), W11501 (2004)

    Google Scholar 

  21. Bird, N.R.A., Perrier, E., Rieu, M.: The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci. 51, 55–63 (2000)

    Google Scholar 

  22. Bos, F.C., Guion, T., Burland, D.M.: Dispersive nature of hole transport in polyvinylcarbazole. Phys. Rev. B 39, 12633–12641 (1989)

    Google Scholar 

  23. Brenner, H.: Macrotransport processes. Langmuir 6, 1715–1724 (1990)

    Google Scholar 

  24. Brantley, S.L., Crane, S.R., Crerar, D., Hellmann, R., Stallard, R.: Dissolution at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 50, 2349–2361 (1986)

    Google Scholar 

  25. Bruderer-Weng, C., Cowie, P., Bernabé, Y., Main, I.: Relating flow channeling to tracer dispersion in heterogeneous networks. Adv. Water Resour. 27(8), 843–855 (2004)

    Google Scholar 

  26. Bunde, A., Havlin, S.: Percolation I. In: Bunde, A., Havlin, S. (eds.) Fractals and Disordered Systems. Springer, Berlin (1996), 408 pp.

    Google Scholar 

  27. Burdine, N.T.: Relative permeability calculations from pore-size distribution data. Trans. Am. Inst. Min. Metall. Eng. 198, 71–77 (1953)

    Google Scholar 

  28. Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng., London 15, 150–166 (1937)

    Google Scholar 

  29. Chao, H., Rajaram, H., Illangasekare, T.: Intermediate-scale experiments and numerical simulations of transport under radial flow in a two-dimensional heterogeneous porous medium. Water Resour. Res. 36, 2869 (2000)

    Google Scholar 

  30. Cherrey, K.D., Flury, M., Harsh, J.B.: Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow. Water Resour. Res. 39, 1165 (2003)

    Google Scholar 

  31. Cieplak, M., Maritan, A., Banavar, J.R.: Invasion percolation and Eden growth: geometry and universality. Phys. Rev. Lett. 76, 3754–3757 (1996)

    Google Scholar 

  32. Clennell, M.B.: Tortuosity: a guide through the maze. In: Lovell, M.A., Harvey, P.K. (eds.) Developments in Petrophysics, vol. 122, pp. 299–344. Geol. Soc., London (1997)

    Google Scholar 

  33. Corapcioglu, M.Y., Fedirchuk, P.: Glass bead micromodel study of solute transport. J. Contam. Hydrol. 36, 209–230 (1999)

    Google Scholar 

  34. Cortis, A., Berkowitz, B.: Anomalous transport in “classical” soil and sand columns. Soil Sci. Soc. Am. J. 68, 1539–1548 (2004)

    Google Scholar 

  35. Dagan, G.: Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19, 183–215 (1987)

    Google Scholar 

  36. Dagan, G.: Dispersion of a passive solute in nonergodic transport by steady velocity-fields in heterogeneous formations. J. Fluid Mech. 233, 197–210 (1991)

    Google Scholar 

  37. Dagan, G., Neuman, S.P. (eds.): Subsurface Flow and Transport: A Stochastic Approach. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  38. Danquigny, C., Ackerer, P., Carlier, J.P.: Laboratory tracer tests on three-dimensional reconstructed heterogeneous porous media. J. Hydrol. 294, 196 (2004)

    Google Scholar 

  39. Delgado, J.M.P.Q.: A simple experimental technique to measure tortuosity in packed beds. Can. J. Chem. Eng. 84, 651–655 (2006)

    Google Scholar 

  40. Dentz, M., Gouze, P., Carrera, J.: Effective non-local reaction kinetics in physicaly and chemically heterogeneous media. J. Contam. Hydrol. 120–121, 222–236 (2011)

    Google Scholar 

  41. Dixon, J.L., Heimsath, A.M., Amundson, R.: The critical role of climate and saprolite weathering in landscape evolution. Earth Surf. Process. Landf. 34, 1507–1521 (2009)

    Google Scholar 

  42. Du, J., Bao, J., Hu, Q., Ewing, R.P.: Uranium release from different size fractions of sediments in Hanford 300 area, Washington, USA. J. Environ. Radioact. 107, 92–94 (2012)

    Google Scholar 

  43. Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84, 036319 (2011)

    Google Scholar 

  44. Epstein, N.: On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989)

    Google Scholar 

  45. Ewing, R.P., Hu, Q., Liu, C.: Scale dependence of intragranular porosity, tortuosity, and diffusivity. Water Resour. Res. 46, W06513 (2010). doi:10.1029/2009WR008183

    Google Scholar 

  46. Fisher, M.E.: The theory of critical point singularities. In: Green, M.S. (ed.) Critical Phenomena, Proc. 1970 Enrico Fermi Int’l. Sch. Phys., Course No. 51, Varenna, Italy, pp. 1–99. Academic Press, New York (1971)

    Google Scholar 

  47. Freeze, R.A.: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. 11, 725–741 (1975)

    Google Scholar 

  48. Friedman, L., Pollak, M.: The Hall effect in the variable-range hopping system. Philos. Mag. B 44, 487–507 (1981)

    Google Scholar 

  49. Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19, 161–180 (1983)

    Google Scholar 

  50. Gelhar, L., Welty, W.C., Rehfeldt, K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28, 1955–1974 (1992)

    Google Scholar 

  51. Ghanbarian-Alavijeh, B., Hunt, A.G.: Unsaturated hydraulic conductivity in porous media: percolation theory. Geoderma 187–188, 77–84 (2012)

    Google Scholar 

  52. Ghanbarian-Alavijeh, B., Skinner, T.E., Hunt, A.G.: Saturation dependence of dispersion in porous media. Phys. Rev. E 86, 066316 (2012)

    Google Scholar 

  53. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461–1477 (2013). doi:10.2136/sssaj2012.0435

    Google Scholar 

  54. Ghanbarian-Alavijeh, B., Hunt, A.G., Sahimi, M., Ewing, R.P., Skinner, T.E.: Percolation theory generates a physically based description of tortuosity in saturated and unsaturated porous media. Soil Sci. Soc. Am. J. (2013). doi:10.2136/sssaj2013.01.0089

    Google Scholar 

  55. Gist, G.A., Thompson, A.H., Katz, A.J., Higgins, R.L.: Hydrodynamic dispersion and pore geometry in consolidated rock. Phys. Fluids A 2, 1533–1544 (1990)

    Google Scholar 

  56. Glass, R.J., Brainard, J.R., Yeh, T.-C.J.: Infiltration in unsaturated layered fluvial deposits at Rio Bravo: macroscopic anisotropy and heterogeneous transport. Vadose Zone J. 4(1), 22–31 (2005)

    Google Scholar 

  57. Grassberger, P.: Conductivity exponent and backbone dimension in 2-d percolation. Physica A 262, 251–263 (1999)

    Google Scholar 

  58. Gupta, V., Bhattacharya, R.: Effect of scale on solute-dispersion in saturated porous-media. Adv. Appl. Probab. 16(1), 18 (1984)

    Google Scholar 

  59. Gupta, V., Bhattacharya, R.: A new derivation of the Taylor-Aris theory of solute-dispersion in a capillary. Water Resour. Res. 19(4), 945–951 (1983)

    Google Scholar 

  60. Gvirtzman, H., Roberts, P.V.: Pore scale spatial analysis of two immiscible fluids in porous media. Water Resour. Res. 27, 1167 (1991)

    Google Scholar 

  61. Haggerty, R.: Matrix diffusion: Heavy-tailed residence time distributions and their influence on radionuclide retention. In: Radionuclide Retention in Geologic Media, pp. 81–90, Workshop Proceedings, Oskarshamn, Sweden, 7–9 May 2001, Radioactive Waste Management GEOTRAP Project, Organisation for Economic Cooperation and Development, (2002)

    Google Scholar 

  62. Haggerty, R., Harvey, C.F., Freiherr von Schwerin, C., Meigs, L.C.: What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results. Water Resour. Res. 40, 01510 (2004)

    Google Scholar 

  63. Havlin, S., Braunstein, L.A., Buldyrev, S.V., Cohen, R., Kalisky, T., Sreenivasan, S., Stanley, H.E.: Optimal path in random networks with disorder: a mini review. Physica A 346, 82–92 (2005)

    Google Scholar 

  64. Herrmann, H.J., Stanley, H.E.: The fractal dimension of the minimum path in two-dimensional and three-dimensional percolation. J. Phys. A 21, L829–L833 (1988)

    Google Scholar 

  65. Hunt, A.: The low frequency conductivity of the Fermi glass. J. Phys. Condens. Matter 4(33), 6957–6970 (1992)

    Google Scholar 

  66. Hunt, A.G.: Upscaling in subsurface transport using cluster statistics of percolation. Transp. Porous Media 30(2), 177–198 (1998)

    Google Scholar 

  67. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conductances. Adv. Water Resour. 24(3,4), 279–307 (2001)

    Google Scholar 

  68. Hunt, A.G.: Continuum percolation theory for water retention and hydraulic conductivity of fractal soils: 1. Estimation of the critical volume fraction for percolation. Adv. Water Resour. 27, 175–183 (2004)

    Google Scholar 

  69. Hunt, A.G.: Scale-dependent hydraulic conductivity from dimensional cross-over. Hydrogeol. J. 14(4), 499–507 (2005)

    Google Scholar 

  70. Hunt, A.G., Blank, L.A., Skinner, T.E.: Distribution of hydraulic conductivity in single-scale anisotropy. Philos. Mag. 86(16), 2407–2428 (2006)

    Google Scholar 

  71. Hunt, A.G., Gee, G.W.: Water retention of fractal soil models using continuum percolation theory: tests of Hanford site soils. Vadose Zone J. 1, 252–260 (2002)

    Google Scholar 

  72. Hunt, A., Idriss, B.: Percolation-based effective conductivity calculations for bimodal distributions of local conductances. Philos. Mag. 89(22–24), 1989–2007 (2009)

    Google Scholar 

  73. Hunt, A.G., Skinner, T.E.: Longitudinal dispersion of solutes in porous media solely by advection. Philos. Mag. 88, 2921–2944 (2008)

    Google Scholar 

  74. Hunt, A.G., Skinner, T.E.: Predicting dispersion in porous media. Complexity (2010). doi:10.1002/cplx.20322

    Google Scholar 

  75. Hunt, A.G., Skinner, T.E.: Incorporation of effects of diffusion into advection-mediated dispersion in porous media. J. Stat. Phys. 140, 544–564 (2010)

    Google Scholar 

  76. Hunt, A.G., Skinner, T.E., Ewing, R.P., Ghanbarian-Alavijeh, B.: Dispersion of solutes in porous media. Eur. Phys. J. B 80, 411–432 (2011)

    Google Scholar 

  77. Hunt, A.G., Skinner, T.E., Ghanbarian, B.: Solute transport predicts scaling of surface reaction rates in porous media: Applications to silicate weathering. Water Resour. Res. (2013, submitted)

    Google Scholar 

  78. Huang, W.E., Oswald, S.E., Lerner, D.N., Smith, C.C., Zheng, C.: Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply. Environ. Sci. Technol. 37, 1905–1911 (2003)

    Google Scholar 

  79. Huang, G., Huang, Q., Zhan, H.: Evidence of one-dimensional scale-dependent fractional advection–dispersion. J. Contam. Hydrol. 85, 53–71 (2006)

    Google Scholar 

  80. Jardine, P.M., Jacobs, G.K., Wilson, G.V.: Unsaturated transport processes in undisturbed heterogeneous porous media: 1. Inorganic contaminants. Soil Sci. Soc. Am. J. 57, 945–953 (1993)

    Google Scholar 

  81. Kapitulnik, A., Aharony, A., Deutscher, G., Stauffer, D.: Self-similarity and correlations in percolation. J. Phys. A, Math. Gen. 16, L269–L274 (1983)

    Google Scholar 

  82. Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179–8181 (1986)

    Google Scholar 

  83. Kim, D.-J., Kim, J.-S., Yun, S.-T., Lee, S.-H.: Determination of longitudinal dispersivity in an unconfined sandy aquifer. Hydrol. Process. 16, 1955 (2002)

    Google Scholar 

  84. Kläfter, J., Silbey, R.: Derivation of the continuous-time random walk equation. Phys. Rev. Lett. 44, 55–58 (1980)

    Google Scholar 

  85. Knackstedt, M.A., Sahimi, M., Sheppard, A.P.: Invasion percolation with long-range correlations: first-order phase transition and nonuniversal scaling properties. Phys. Rev. E 61(5), 4920 (2000)

    Google Scholar 

  86. Kohlbecker, M.V., Wheatcraft, S.W., Meerschaert, M.M.: Heavy-tailed log hydraulic conductivity distributions imply heavy-tailed log velocity distributions. Water Resour. Res. 42(4), W04411 (2006)

    Google Scholar 

  87. Koplik, J., Redner, S., Wilkinson, D.: Transport and dispersion in random networks with percolation disorder. Phys. Rev. A 37, 2619–2636 (1988)

    Google Scholar 

  88. Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56, 3319–3325 (1997)

    Google Scholar 

  89. Kozeny, J.: Über Kapillare Leitung des Wasssers im Boden. Sitzungsber. Adak. Wiss. Wien 136, 271–306 (1927)

    Google Scholar 

  90. Krepysheva, N., Di Pietro, L., Neel, M.C.: Space-fractional advection diffusion and reflective boundary condition. Phys. Rev. E 73(2), 021104 (2006). Part 1

    Google Scholar 

  91. Kunz, H., Souillard, B.: Essential singularity in percolation model. Phys. Rev. Lett. 40, 133–135 (1976)

    Google Scholar 

  92. Lallemand-Barres, A., Peaudecerf, P.: Recherche des relations entre la valeur de la dispersivité macroscopique d’un milieu aquifère, ses autres charactéristiques et les conditions de mésure (Research for relations between the macroscopic dispersivity value of an aquifer, its other characteristics and measurement conditions), Bulletin du B. R. G. M. (deuxième série), section III, (4) pp. 227–284 (1978)

    Google Scholar 

  93. Lee, Y., Andrade, J.S., Buldyrev, S.V., Dokholoyan, N.V., Havlin, S., King, P.R., Paul, G., Stanley, H.E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E 60(3), 3425–3428 (1999)

    Google Scholar 

  94. Li, L., Steefel, C.I., Yang, L.: Scale dependence of mineral dissolution rates within single pores and fractures. Geochim. Cosmochim. Acta 72, 360–377 (2008)

    Google Scholar 

  95. Lin, M., Chabaux, F., Pelt, E., Granet, M., Sak, P.B., Gaillardet, J., Lebedeva, M., Brantley, S.L.: The effect of curvature on weathering rind formation: evidence from uranium-series isotopes in basaltic andesite weathering clasts in Guadeloupe. Geochim. Cosmochim. Acta 80, 92–107 (2012)

    Google Scholar 

  96. Liu, Z.-F., Wang, X.-H., Mao, P., Wu, Q.-S.: Tracer dispersion between two lines in two-dimensional percolation porous media. Chin. Phys. Lett. 20, 1969–1972 (2003)

    Google Scholar 

  97. Liu, C., Shi, Z., Zachara, J.M.: Kinetics of Uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Environ. Sci. Technol. 43, 6560–6566 (2009)

    Google Scholar 

  98. Lopez, E., Buldyrev, S.V., Barunstein, L.A., Havlin, S., Stanley, H.E.: Possible connection between the optimal path and flow in percolation clusters. Phys. Rev. E 72, 056131 (2005) (6 pp.)

    Google Scholar 

  99. Mackay, D.M., Freyberg, D.L., Roberts, P.B., Cherry, J.A.: A natural gradient experiment on solute transport in a sand aquifer. I. Approach and overview of plume movement. Water Resour. Res. 22, 2017–2029 (1986)

    Google Scholar 

  100. Maher, K.: The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010)

    Google Scholar 

  101. Makse, H., Andrade, J.S., Stanley, H.E.: Tracer dispersion in a percolation network with spatial correlations. Phys. Rev. E 61, 583–586 (2000)

    Google Scholar 

  102. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1983) (468 pp.)

    Google Scholar 

  103. Margolin, G., Berkowitz, B.: Application of continuous time random walks to transport in porous media. J. Phys. Chem. B 104, 3942–3947 (2000)

    Google Scholar 

  104. Matyka, M., Khalili, A., Koza, Z.: Tortuosity-porosity relation in porous media flow. Phys. Rev. E 78, 026306 (2008)

    Google Scholar 

  105. Meerschaert, M.M., Benson, D.A., Baumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E 59, 5026–5028 (1999)

    Google Scholar 

  106. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Becker-Kern, P.: Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66(6), 060102 (2002). Part 1

    Google Scholar 

  107. Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection-diffusion. Physica A 367, 181–190 (2006)

    Google Scholar 

  108. Moldrup, P., Oleson, T., Komatsu, T., Schjoning, P., Rolston, D.E.: Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65, 613–623 (2001)

    Google Scholar 

  109. Molin, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48, W03527 (2012)

    Google Scholar 

  110. Moreno, L., Tsang, C.F.: Flow channeling in strongly heterogeneous porous media: a numerical study. Water Resour. Res. 30, 1421 (1994)

    Google Scholar 

  111. Mota, M., Teixeira, J.A., Yelshin, A.: Binary spherical particle mixed beds porosity and permeability relationship measurement. Trans. Filtr. Soc. 1, 101–106 (2001)

    Google Scholar 

  112. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)

    Google Scholar 

  113. Navarre-Sitchler, A., Brantley, S.L.: Basalt weathering across scales. Earth Planet. Sci. Lett. 261(1–2), 321–334 (2007). doi:10.1016/j.epsl.2007.07.010

    Google Scholar 

  114. Navarre-Sitchler, A., Steefel, C., Hausrath, E., Brantley, S.L.: Influence of porosity on basalt weathering rates from the clast to watershed scale. Geochim. Cosmochim. Acta 71(15), A707 (2007)

    Google Scholar 

  115. Neuman, S.P.: Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour. Res. 26, 1749–1758 (1990)

    Google Scholar 

  116. Neuman, S.P.: Comment on “Longitudinal dispersivity data and implications for scaling behavior” by Schulze-Makuch. Ground Water 44, 140–141 (2006) (Author’s reply, p. 141)

    Google Scholar 

  117. Neuman, S.P., Di Federico, V.: Multifaceted nature of hydrogeologic scaling and its interpretation. Rev. Geophys. 41(3), 1014 (2003)

    Google Scholar 

  118. Nielsen, D.R., Biggar, J.W.: Miscible displacement in soils. I. Experimental information. Soil Sci. Soc. Am. Proc. 25, 1–5 (1961)

    Google Scholar 

  119. Nielsen, D.R., Biggar, J.W.: Miscible displacement in soils. III. Theoretical considerations. Soil Sci. Soc. Am. Proc. 26, 216–221 (1962)

    Google Scholar 

  120. Noniel, C., Steefel, C.I., Yang, L., Ajo-Franklin, J.: Upscaling calcium carbonate precipitation rates from pore to continuum scale. Chem. Geol. 318, 60–74 (2012)

    Google Scholar 

  121. Pachepsky, Ya., Benson, D., Rawls, W.: Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation. Soil Sci. Soc. Am. J. 64, 1234–1243 (2000)

    Google Scholar 

  122. Park, M., Kleinfelter, N., Cushman, J.H.: Scaling laws and Fokker-Planck equations for 3-dimensional porous media with fractal mesoscale. Multiscale Model. Simul. 4(4), 1233–1244 (2005)

    Google Scholar 

  123. Paul, G., Havlin, S., Stanley, H.E.: Fractal behavior of the shortest path between two lines in percolation systems. Phys. Rev. E 65, 066105 (2002) (pp. 8)

    Google Scholar 

  124. Peng, S., Hu, Q., Ewing, R.P., Liu, C., Zachara, J.M.: Quantitativve 3-d elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 area. Environ. Sci. Technol. 46, 2025–2032 (2012)

    Google Scholar 

  125. Pfannkuch, H.: Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux (Contribution to the study of the displacement of miscible fluids in a porous medium). Rev. Inst. Fr. Pét. 2, 18 (1963)

    Google Scholar 

  126. Pfister, G.: Pressure-dependent electronic transport in amorphous As2Se3. Phys. Rev. Lett. 35, 1474–1477 (1974)

    Google Scholar 

  127. Pfister, G., Scher, H.: Time-dependent electronic transport in amorphous solids—As2Se3. Phys. Rev. B 15, 2062–2083 (1977)

    Google Scholar 

  128. Pfister, G., Griffiths, C.H.: Temperature-dependence of transient hole hopping transport in disordered organic solids—carbazole polymers. Phys. Rev. Lett. 40, 659–662 (1978)

    Google Scholar 

  129. Porto, M., Havlin, S., Roman, H.E., Bunde, A.: Probability distribution of the shortest path on the percolation cluster, its backbone, and skeleton. Phys. Rev. E 58(5), R5205–R5208 (1998)

    Google Scholar 

  130. Ramanathan, R., Ritzi, R.W., Huang, C.C.: Linking hierarchical stratal architecture to plume spreading in a Lagrangian-based transport model. Water Resour. Res. 44, W04503 (2008)

    Google Scholar 

  131. Ramirez, J.M., Thomann, E., Wamire, E., Haggerty, R., Wood, B.: A generalized Taylor-Aris formula and skew diffusion. Multiscale Model. Simul. 5, 786–801 (2006)

    Google Scholar 

  132. Raoof, A., Hassanizadeh, S.M.: Upscaling transport of adsorbing solutes in porous media. J. Porous Media 13, 395–408 (2010)

    Google Scholar 

  133. Raymo, M.E.: The Himalayas, organic-carbon burial, and climate in the Miocene. Paleoceanography 9(3), 399–404 (1994)

    Google Scholar 

  134. Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties. I. Theory. Soil Sci. Soc. Am. J. 55, 1231 (1991)

    Google Scholar 

  135. Rigord, P., Calvo, A., Hulin, J.: Transition to irreversibility for the dispersion of a tracer in porous-media. Phys. Fluids A, Fluid Dyn. 2(5), 681–687 (1990)

    Google Scholar 

  136. Rivard, C., Delay, F.: Simulations of solute transport in fractured porous media using 2D percolation networks with uncorrelated hydraulic conductivity fields. Hydrogeol. J. 12, 613–627 (2004)

    Google Scholar 

  137. Roberts, P.V., Goltz, M.N., Mackay, D.M.: A natural gradient experiment on solute transport in a sand aquifer. III. Retardation estimates and mass balances for organic solutes. Water Resour. Res. 22, 2047–2058 (1986)

    Google Scholar 

  138. Rubin, Y.: Applied Stochastic Hydrogeology. Oxford Univ. Press, London (2003)

    Google Scholar 

  139. Saffman, P.G.: A theory of dispersion in a porous medium. J. Fluid Mech. 6, 321 (1959)

    Google Scholar 

  140. Sahimi, M.: Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media. Transp. Porous Media 13, 3–40 (1993)

    Google Scholar 

  141. Sahimi, M.: Applications of Percolation Theory. Taylor & Francis, London (1994)

    Google Scholar 

  142. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock. From Classical Methods to Modern Approaches. Wiley/VCH, Weinheim (1995). 500 pp.

    Google Scholar 

  143. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011). 709 pp.

    Google Scholar 

  144. Sahimi, M.: Dispersion in porous media, continuous-time random walk, and percolation. Phys. Rev. E 85, 016316 (2012)

    Google Scholar 

  145. Sahimi, M., Imdakm, A.O.: The effect of morphological disorder on hydrodynamic dispersion in flow through porous media. J. Phys. A, Math. Gen. 21, 3833–3870 (1988)

    Google Scholar 

  146. Sak, P.B., Fisher, D.M., Gardner, T.W., Murphy, K., Brantley, S.L.: Rates of weathering rind formation on Costa Rican basalt. Geochim. Cosmochim. Acta 68, 1453–1472 (2003)

    Google Scholar 

  147. Sanchez, R., Carreras, B.A., van Milligen, B.P.: Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations. Phys. Rev. E 71(1), 011111 (2005). Part 1

    Google Scholar 

  148. Scheidegger, A.E.: An evaluation of the accuracy of the diffusivity equation for describing miscible displacement in porous media. In: Proc. Theory of Fluid Flow in Porous Media Conf., Univ. Oklahoma, pp. 101–116 (1959)

    Google Scholar 

  149. Scheidegger, A.E.: The Physics of Flow Through Porous Media, 3rd edn. University of Toronto Press, Toronto (1974)

    Google Scholar 

  150. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12(6), 2455–2477 (1975)

    Google Scholar 

  151. Scher, H., Shlesinger, M., Bendler, J.: Time-scale invariance in transport and relaxation. Phys. Today 44(1), 26–34 (1991). doi:10.1063/1.881289

    Google Scholar 

  152. Schulze-Makuch, D.: Facies Dependent Scale Behavior of Hydraulic Conductivity and Longitudinal Dispersivity in the Carbonate Aquifer of Southeastern Wisconsin. Ph.D. Dissertation, University of Wisconsin, Milwaukee (1996)

    Google Scholar 

  153. Schulze-Makuch, D.: Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43, 443–456 (2005)

    Google Scholar 

  154. Schulze-Makuch, D., Carlson, D.A., Cherkauer, D.S., Malik, P.: Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37, 904–919 (1999)

    Google Scholar 

  155. Seaman, J.C., Bertsch, P.M., Wilson, M., Singer, J., Majs, F., Aburime, S.A.: Tracer migration in a radially divergent flow field: longitudinal dispersivity and anionic tracer retardation. Vadose Zone J. 6, 373 (2007)

    Google Scholar 

  156. Shah, C.B., Yortsos, Y.C.: The permeability of strongly disordered systems. Phys. Fluids 8, 280–282 (1996)

    Google Scholar 

  157. Sheldon, N.D.: Abrupt chemical weathering increase across the Permian–Triassic boundary. Paleogeogr. Paleoclimatol. Paleoecol. 231(3–4), 315–321 (2006)

    Google Scholar 

  158. Shlesinger, M.F.: Asymptotic solutions of continuous-time random walks. J. Stat. Phys. 10, 421–434 (1974)

    Google Scholar 

  159. Silliman, S.E., Simpson, E.S.: Laboratory evidence of the scale effect in dispersion of solutes in porous media. Water Resour. Res. 23, 1667–1673 (1987)

    Google Scholar 

  160. Sheppard, A.P., Knackstedt, M.A., Pinczewski, W.V., Sahimi, M.: Invasion percolation: new algorithms and universality classes. J. Phys. A, Math. Gen. 32, L521–L529 (1999)

    Google Scholar 

  161. Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54, 1–74 (1979)

    Google Scholar 

  162. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor and Francis, London (1994)

    Google Scholar 

  163. Stauffer, D., Sornette, D.: Log-periodic oscillations for biased diffusion on random lattice. Physica A 252(3–4), 271–277 (1998)

    Google Scholar 

  164. Sternberg, S.P.K., Cushman, J.H., Greenkorn, R.A.: Laboratory observation of nonlocal dispersion. Transp. Porous Media 23, 135–151 (1996)

    Google Scholar 

  165. Sudicky, E.A.: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22, 725–741 (1986)

    Google Scholar 

  166. Sudicky, E.A., Cherry, J.A., Frind, E.O.: Migration of contaminants in groundwater at a landfill: a case study. IV. A natural gradient dispersion test. J. Hydrol. 63, 81 (1983)

    Google Scholar 

  167. Tiedje, T.: Information about band-tail states from time-of-flight experiments. In: Pankove, J. (ed.) Semiconductors and Semimetals, vol. 21C, p. 207. Academic Press, New York (1984)

    Google Scholar 

  168. Tye, F.L.: Tortuosity. J. Power Sources 9, 89–100 (1983)

    Google Scholar 

  169. van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Google Scholar 

  170. Vance, D., Teagle, D.A.H., Foster, G.L.: Variable quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458, 493–496 (2009)

    Google Scholar 

  171. Vanderborght, J., Vereecken, H.: Review of dispersivities for transport modeling in soils. Vadose Zone J. 6, 29–52 (2007)

    Google Scholar 

  172. Vervoort, R.W., Cattle, S.R.: Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J. Hydrol. 272, 36–49 (2003)

    Google Scholar 

  173. Wheatcraft, S.W., Tyler, S.W.: An explanation of scale-dependent dispersitvity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24, 566–578 (1988)

    Google Scholar 

  174. White, A.F., Brantley, S.L.: The effect of time on the weathering rates of silicate minerals. Why do weathering rates differ in the lab and in the field? Chem. Geol. 202, 479–506 (2003)

    Google Scholar 

  175. Winter, C.L., Tartakovsky, D.M., Guadagnini, A.: Moment differential equations for flow in highly heterogeneous porous media. Surv. Geophys. 24(1), 81–106 (2003)

    Google Scholar 

  176. Xu, M., Eckstein, Y.: Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 33, 905–908 (1995)

    Google Scholar 

  177. Yu, B., Cheng, P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 45, 2983–2993 (2002)

    Google Scholar 

  178. Zhang, X.X., Crawford, J.W., Deeks, L.K., et al.: A mass balance based numerical method for the fractional advection-diffusion equation: theory and application. Water Resour. Res. 41(7), W07029 (2005)

    Google Scholar 

  179. Zhang, Y., Benson, D.A., Meerschaert, M.M., et al.: Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the macrodispersion experiment site data. Water Resour. Res. 43(5), W05439 (2007)

    Google Scholar 

  180. Zhang, X., Lv, M.: Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water Resour. Res. 43, W07437 (2007)

    Google Scholar 

  181. Zhong, L., Liu, C., Zachara, J.M., Kennedy, D.W., Scezcody, J.E., Wood, B.: Oxidative remobilization of biogenic uranium(IV) precipitates: effects of iron(II) and pH. J. Environ. Qual. 34, 1763–1771 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Basic CTRW and Gaussian Results

Appendix: Basic CTRW and Gaussian Results

For Gaussian dispersion:

$$\begin{aligned} \langle x \rangle \propto& t \end{aligned}$$
(11.44)
$$\begin{aligned} \sigma ( t ) \propto& t^{0.5} \end{aligned}$$
(11.45)

For CRTW:

$$ \psi (t) \propto t^{ - 1 - \beta},\quad t \to \infty $$
(11.46)
  • If 0<β<1

    $$\begin{aligned} \langle x \rangle \propto& t^{\beta} \end{aligned}$$
    (11.47)
    $$\begin{aligned} \sigma ( t ) \propto& t^{\beta} \end{aligned}$$
    (11.48)
  • If 1<β<2

    $$\begin{aligned} \langle x \rangle \propto& t \end{aligned}$$
    (11.49)
    $$\begin{aligned} \sigma ( t ) \propto& t^{ ( 3 - \beta ) /2} \end{aligned}$$
    (11.50)

Sahimi [144]:

  • If 0<β<1

    $$ \bigl\langle x^{2} \bigr\rangle \propto t^{2\beta} $$
    (11.51)
  • If 1<β<2

    $$ \bigl\langle x^{2} \bigr\rangle \propto t^{3 - \beta} $$
    (11.52)

While our results are compatible with Eq. (11.47) and Eq. (11.48) (within 5 % deviation), we do not find that the long tails of the distribution are compatible with Eq. (11.46) for values of β obtained from either Eq. (11.47) or Eq. (11.48). Here we find discrepancies.

This means that, as yet, we cannot map our treatment of dispersion onto the CTRW. If such a correspondence could be made, the calculation of dispersion for both conservative and non-conservative solutes would be greatly simplified, since the CTRW is already designed to treat either case. In other words, complications due to particle conservation can be incorporated into the CTRW even when some of the particles are adsorbed on surfaces or otherwise lost to the flow, even if subsequent desorption is also possible. Thus an important goal of subsequent research is to investigate more closely the relationship between the present treatment and the CTRW.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, A., Ewing, R., Ghanbarian, B. (2014). Properties Based on Tortuosity. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-03771-4_11

Download citation

Publish with us

Policies and ethics