Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 880))

Abstract

The fundamental concepts of percolation theory are introduced in Chaps. 1 and 2. Chapter 1 includes descriptions of geometrical and topological variables, while the description of such properties as tortuosity and transport are deferred to Chap. 2. Chapter 1 has, generally speaking, two purposes: (1) to be a reference for material that will be applied later in the book, (2) to provide a means for a scientist to gain a working familiarity with percolation theory. The chapter is organized in such a way that those sections that provide essentially all of the expertise required for arbitrary applications of percolation theory to porous media problems can be read in early explorations, while those sections (1.111.15) that provide additional detail can be skipped. The role of universal scaling functions and the relevance of power-law behavior are discussed in terms of the understanding of the fractal structure of percolation theory. The chapter concludes with a discussion of the non-universality of the percolation threshold and presentation of what general methods have been proposed to predict it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, J., Meir, Y., Harris, A.B., Aharony, A.: Bull. Isr. Phys. Soc. 35, 102 (1989)

    Google Scholar 

  2. Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long-range percolation. Commun. Math. Phys. 111(4), 505–531 (1987)

    Article  Google Scholar 

  3. Alexandrowizc, Z.: Critically branched chains and percolation clusters. Phys. Lett. A 80, 284–286 (1980)

    Article  Google Scholar 

  4. Balberg, I.: Recent developments in continuum percolation. Philos. Mag. B 30, 991–1003 (1987)

    Article  Google Scholar 

  5. Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton (1995)

    Google Scholar 

  6. Berkowitz, B., Balberg, I.: Percolation theory and its application to groundwater hydrology. Water Resour. Res. 29, 775–794 (1993)

    Article  Google Scholar 

  7. Broadbent, S.R., Hammersley, J.M.: Percolation processes, 1. Crystals and mazes. Proc. Camb. Philos. Soc. 53, 629–641 (1957)

    Article  Google Scholar 

  8. Bunde, A., Havlin, S.: Percolation I. In: Bunde, A., Havlin, S. (eds.) Fractals and Disordered Systems, Springer, Berlin (1996), 408 pp.

    Chapter  Google Scholar 

  9. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C, Solid State Phys. 12, L31–L35 (1979)

    Article  Google Scholar 

  10. Chandler, R., Koplik, J., Lerman, K., Willemsen, J.F.: Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249–267 (1982)

    Article  Google Scholar 

  11. De ’Bell, K., Essam, J.W., Guttman, A.J.: On two dimensional directed percolation. University of Melbourne, Dept. of Mathematics (1988)

    Google Scholar 

  12. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2000)

    Google Scholar 

  13. Domb, C., Lebowitz, J.L.: In: Phase Transitions and Critical Phenomena, Academic, London (1988)

    Google Scholar 

  14. Du, D.-Z., Hsu, F.: Combinatorial Network Theory. Springer, Berlin (1995)

    Google Scholar 

  15. Essam, J.: Rep. Prog. Phys. 43, 843 (1980)

    Article  Google Scholar 

  16. Essam, J.W., Gaunt, D.S., Guttmann, A.J.: Percolation theory at critical dimension. J. Phys. A 11, 1983–1990 (1978)

    Article  Google Scholar 

  17. Fatt, I.: The network model of porous media. Trans. Am. Inst. Min. Metall. Pet. Eng. Inc. 207, 144–177 (1956)

    Google Scholar 

  18. Fisher, M.E.: Physics 3, 255 (1967)

    Google Scholar 

  19. Flory, P.J.: J. Am. Chem. Soc. 63, 3083 (1941)

    Article  Google Scholar 

  20. Gaillard-Groleas, G., Lagier, M., Sornette, D.: Critical behaviour in piezoelectric ceramics. Phys. Rev. Lett. 64, 1577 (1990)

    Article  Google Scholar 

  21. Galam, S., Mauger, A.: A universal formula for percolation thresholds II. Extension to anisotropic and aperiodic lattices. Phys. Rev. E 56, 322 (1997)

    Article  Google Scholar 

  22. Gandolfi, A., Grimmett, G., Russo, L.: On the uniqueness of the infinite cluster in the percolation model. Commun. Math. Phys. 114, 549–552 (1988)

    Article  Google Scholar 

  23. Garboczi, E.J., Snyder, K.A., Douglas, J.F., Thorpe, M.F.: Phys. Rev. E 52, 819–828 (1995)

    Article  Google Scholar 

  24. Kesten, H.: Percolation Theory for Mathematicians. Progress in Probability and Statistics, vol. 2. Birkhauser, Boston (1982), 423 pp. ISBN 3-7643-3107-0

    Book  Google Scholar 

  25. Kogut, P.M., Straley, J.: Distribution-induced non-universality of the percolation conductivity exponents. J. Phys. C, Solid State Phys. 12, 2151–2159 (1979)

    Article  Google Scholar 

  26. Kunz, H., Souillard, B.: Phys. Rev. Lett. 40, 133 (1978)

    Article  Google Scholar 

  27. Lesne, A.: Renormalization Methods. Wiley, New York (1998)

    Google Scholar 

  28. Middlemiss, K.M., Whittington, S.G., Gaunt, D.C.: Monte-Carlo study of the percolation cluster for the square lattice problem. J. Phys. A 13, 1835–1840 (1980)

    Article  Google Scholar 

  29. Miyazima, S.: An exact percolation point for surface filing in a four-dimensional hyper-cubic lattice. Prog. Theor. Phys. 113, 1159–1163 (2005)

    Article  Google Scholar 

  30. Nickel, B., Wilkinson, D.: Invasion percolation on the Cayley tree—exact solution of a modified percolation model. Phys. Rev. Lett. 51(2), 71–74 (1983)

    Article  Google Scholar 

  31. Pike, G.E.: Conductivity of thick film (cermet) resistors as a function of metallic particle volume fraction. In: Garland, J.C., Tanner, D.B. (eds.) Electrical Transport and Optical Properties of Inhomogeneous Materials, vol. 40, AIP, New York, pp. 366–371 (1978)

    Google Scholar 

  32. Pike, R., Stanley, H.E.: Order propagation near the percolation threshold. J. Phys. A 14, L169–177 (1981)

    Article  Google Scholar 

  33. Pollak, M.: Non-crystalline Semiconductors. CRC Press, Boca Raton (1987). Chap. 5ab

    Google Scholar 

  34. Reynolds, P.J., Klein, W., Stanley, H.E.: J. Phys. C 10, L167 (1977)

    Google Scholar 

  35. Rosso, M., Gouyet, J.F., Sapoval, B.: Gradient percolation in 3 dimensions and relation to diffusion fronts. Phys. Rev. Lett. 57, 3195–3198 (1986)

    Article  Google Scholar 

  36. Sahimi, M.: Flow phenomena in rocks—from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993)

    Article  Google Scholar 

  37. Sahimi, M., Yortsos, Y.C.: Applications of fractal geometry to porous media: a review. Paper presented at the 1990 Annual Fall Meeting of the Society of Petroleum Engineers, New Orleans, LA (1990)

    Google Scholar 

  38. Scher, H., Zallen, R.: Critical density in percolation processes. J. Chem. Phys. 53, 3759 (1970)

    Article  Google Scholar 

  39. Shante, V.K.S., Kirkpatrick, S.: Adv. Phys. 20, 325 (1971)

    Article  Google Scholar 

  40. Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors. Springer, Heidelberg (1984)

    Book  Google Scholar 

  41. Skal, A.S., Shklovskii, B.I.: Topology of an infinite cluster in the theory of percolation and its relationship to the theory of hopping conduction. Sov. Phys. Semicond. 8, 1029–1032 (1975)

    Google Scholar 

  42. Sornette, D.: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer, Heidelberg (2004)

    Google Scholar 

  43. Sornette, D., Lagier, M., Roux, S., Hansen, A.: Critical piezoelectricity in percolation. J. Phys. France 50, 2201–2216 (1989)

    Article  Google Scholar 

  44. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York (1971)

    Google Scholar 

  45. Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54, 1–74 (1979)

    Article  Google Scholar 

  46. Stauffer, D.: Introduction to Percolation Theory. Taylor and Francis, London (1985)

    Book  Google Scholar 

  47. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor and Francis, London (1994)

    Google Scholar 

  48. Strenski, P.N., Bradley, R.M., Debierre, J.M.: Scaling behavior of percolation surfaces in three dimensions. Phys. Rev. Lett. 66, 1330–1333 (1991)

    Article  Google Scholar 

  49. Sykes, M.F., Wilkinson, M.K.: Derivation of series expansions for a study of percolation processes. J. Phys. A 19, 3415–3424 (1986)

    Article  Google Scholar 

  50. Toulouse, G.: Nuovo Cimento B 23, 234 (1974)

    Article  Google Scholar 

  51. Vyssotsky, V.A., Gordon, S.B., Frisch, H.L., Hammersley, J.M.: Critical percolation probabilities (bond problem). Phys. Rev. 123, 1566–1567 (1961)

    Article  Google Scholar 

  52. Wilkinson, D., Willemsen, J.: Invasion percolation: a new form of percolation theory. J. Phys. A, Math. Gen. 16, 3365–3376 (1983)

    Article  Google Scholar 

  53. Ziff, R.M., Sapoval, B.: The efficient determination of the percolation threshold by a frontier-generating walk in a gradient. J. Phys. A 19, L1169–L1172 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 1.1

    Show that at arbitrary p the largest clusters have cluster radius r s=s σν, and argue then that for arbitrary p and arbitrary s, r s=s σν g[sσ(pp c)], where g is an unknown function. Does your result for r s imply an effective dimension of the clusters?

  2. 1.2

    Derive Eq. (1.50) from Eq. (1.49).

  3. 1.3

    Derive Eq. (1.42) from Eq. (1.41).

  4. 1.4

    The critical exponent α is defined through the singular contribution to ∑s 0 n s∝(pp c)2−α. Find α in terms of known exponents using the results of development of (1.14) and an analogy to Eq. (1.16).

  5. 1.5

    The critical exponent γ is defined through the singular contribution ∑s 2 n s∝(pp c)γ. Find γ in terms of known exponents.

  6. 1.6

    Show explicitly that Eq. (1.30) results from Eq. (1.29).

  7. 1.7

    Verify the scaling relationships for the critical exponents in 1-d, 2-d, and 6-d. Do you expect them to be precisely satisfied in 3-d (where the exponents may not ever be represented in terms of rational fractions)?

  8. 1.8

    Show that, for one-dimensional systems, definition of χ as

    $$\chi = \frac{\sum_{r = 1}^{\infty} rp^{r}}{\sum_{r = 1}^{\infty} p^{r}} $$

    leads to χ=p/(1−p) instead of χ=(p+1)/(1−p) as obtained from Eq. (1.5). How would you characterize the sensitivity of the scaling behavior of the correlation length relative to the details of its definition?

  9. 1.9

    The sum in Problem 1.4 has been argued to describe, for a magnetic system, the free energy, while P (the first moment) corresponds to the magnetization, and the sum in Problem 1.5 (the second moment) to the susceptibility. Find an argument for why an increase in the moment of the cluster distribution by one corresponds to a derivative with respect to the applied field.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunt, A., Ewing, R., Ghanbarian, B. (2014). Percolation Theory: Topology and Structure. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-03771-4_1

Download citation

Publish with us

Policies and ethics