Advertisement

An Ant Colony Optimization Algorithm for the Min-Degree Constrained Minimum Spanning Tree Problem

  • V. Venkata Ramana Murthy
  • Alok Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)

Abstract

Given a connected edge-weighted undirected graph, the min-degree constrained minimum spanning tree (MDCMST) problem seeks on this graph a spanning tree of least cost in which every non-leaf node have a degree of at least d in the spanning tree. This problem is \(\mathcal{NP}\)-Hard for \(3 \leq d \leq \lfloor \frac{n}{2} \rfloor\) where n is the number of nodes in the graph. In this paper, we have proposed an ant colony optimization based approach to this problem. The proposed approach has been tested on Euclidean and random instances both. Computational results show the effectiveness of the proposed approach.

Keywords

Ant Colony Optimization Algorithm Combinatorial Optimization Min-Degree Constrained Minimum Spanning Tree Problem Swarm Intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida, A.M., Martins, P., Souza, M.C.: Min-Degree Constrained Minimum Spanning Tree Problem: Complexity, Proprieties, and Formulations. Technical Report 6/2006, Centre for Operational Research, University of Lisboa (2006)Google Scholar
  2. 2.
    Almeida, A.M., Martins, P., Souza, M.C.: md-MST is \(\mathcal{NP}\)-Hard for d ≥ 3. Electronic Notes in Discrete Mathematics 36, 9–15 (2010)CrossRefGoogle Scholar
  3. 3.
    Akgün, I., Tansel, B.C.: Min-Degree Constrained Minimum Spanning Tree Problem: New Formulation via Miller-Tucker-Zemlin Constraints. Computers & Operations Research 37, 72–82 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Miller, C., Tucker, A., Zemlin, R.: Integer Programming Formulation of Travelling Salesman Problems. Journal of ACM 7, 326–329 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Murthy, V., V.R., Singh, A.: Solving the Min-Degree Constrained Minimum Spanning Tree Problem Using Heuristic and Metaheuristic Approaches. In: Proceedings of the Second IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC 2012), pp. 716–720. IEEE Press (2012)Google Scholar
  6. 6.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive Feedback as a Search Strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1991)Google Scholar
  7. 7.
    Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics – Part B 26, 29–42 (1996)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sundar, S., Singh, A., Rossi, A.: New Heuristics for Two Bounded-Degree Spanning Tree Problems. Information Sciences 195, 226–240 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Potluri, A., Singh, A.: Hybrid Metaheuristic Algorithms for Minimum Weight Dominating Set. Applied Soft Computing 13, 76–88 (2013)CrossRefGoogle Scholar
  11. 11.
    Sundar, S., Singh, A.: New Heuristic Approaches for the Dominating Tree Problem. Applied Soft Computing (in press, 2013), doi:10.1016/j.asoc.2013.07.014Google Scholar
  12. 12.
    Julstrom, B.A.: Codings and Operators in Two Genetic Algorithms for the Leaf-Constrained Minimum Spanning Tree Problem. International Journal of Applied Mathematics and Computer Science 14, 385–396 (2004)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Singh, A., Baghel, A.S.: New Metaheuristic Approaches for the Leaf-Constrained Minimum Spanning Tree Problem. Asia-Pacific Journal of Operational Research 25, 575–589 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Singh, A.: An Artificial Bee Colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem. Applied Soft Computing 9, 625–631 (2009)CrossRefGoogle Scholar
  15. 15.
    Solnon, C., Fenet, S.: A Study of ACO Capabilities for Solving the Maximum Clique Problem. Journal of Heuristics 12, 155–180 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Julstrom, B.A.: The Blob code is Competitive with Edge-Sets in Genetic Algorithms for the Minimum Routing Cost Spanning Tree Problem. In: Proceedings of the Genetic and Evolutionary Computation Conference 2005 (GECCO 2005), vol. 1, pp. 585–590. ACM Press, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • V. Venkata Ramana Murthy
    • 1
  • Alok Singh
    • 1
  1. 1.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations