Protein Function Prediction Using Adaptive Swarm Based Algorithm

  • Archana Chowdhury
  • Amit Konar
  • Pratyusha Rakshit
  • Ramadoss Janarthanan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)


The center of attention of the research in bioinformatics has been towards understanding the biological mechanisms and protein functions. Recently high throughput experimental methods have provided many protein-protein interaction networks which need to be analyzed to provide an insight into the functional role of proteins in living organism. One of the important problems of post-genomic era is to predict the functions of unannotated proteins. In this paper we propose a novel approach for protein function prediction by utilizing the fact that most of the proteins which are connected in protein-protein interaction network, tend to have similar functions. The method randomly associates unannotated protein with functions from the possible set of functions. Our approach, Artificial Bee Colony with Temporal Difference Q-Learning (ABC-TDQL), then optimizes the score function which incorporates the extent of similarity between the set of functions of unannotated protein and annotated protein, to associate a function to an unannotated protein. The approach was utilized to predict protein function of Saccharomyces Cerevisiae and the experimental results reveal that our proposed method outperforms other algorithms in terms of precession, recall and F-value.


Bioinformatics protein function prediction Protein – protein interaction network annotated protein Artificial Bee Colony algorithm Temporal Difference Q- Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part i. Experimental techniques and databases. PLoS Computational Biology 3(3), 337–344 (2007)CrossRefGoogle Scholar
  2. 2.
    Breitkreutz, B.J., et al.: The BioGRID Interaction Database: 2008 Update. Nucleic Acids Research 36(Database issue), D637–D640 (2008)Google Scholar
  3. 3.
    Deng, M.H., Zhang, K., Mehta, S., Chen, T., Sun, F.Z.: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology 10(6), 947–960 (2003)CrossRefGoogle Scholar
  4. 4.
    Deng, M.H., Chen, T., Sun, F.Z.: An integrated probabilistic model for functional prediction of proteins. Journal of Computational Biology 11(2-3), 463–475 (2004)CrossRefGoogle Scholar
  5. 5.
    Schwikowski, B., Uetz, P., Field, S.: A network of protein-protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)CrossRefGoogle Scholar
  6. 6.
    Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of predition accuracy of protein function from protein-protein interaction data. Yeast 18, 523–531 (2001)CrossRefGoogle Scholar
  7. 7.
    Hodgman, T.C.: A historical perspective on gene/protein functional assignment. Bioinformatics 16, 10–15 (2000)CrossRefGoogle Scholar
  8. 8.
    Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U. S. A. 85, 2444–2448 (1988)CrossRefGoogle Scholar
  9. 9.
    Wu, L.F., Hughes, T.R., Davierwala, A.P., Robinson, M.D., Stoughton, R., Altschuler, S.J.: Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet. 31, 255–265 (2002)CrossRefGoogle Scholar
  10. 10.
    Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999)CrossRefGoogle Scholar
  11. 11.
    Deane, C.M., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell Proteomics 1, 349–356 (2002)CrossRefGoogle Scholar
  12. 12.
    Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares Jr., M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. U. S. A. 97, 262–267 (2000)CrossRefGoogle Scholar
  13. 13.
    Chen, G., Wang, J., Li, M.: GO semantic similarity based analysis for huaman protein interactions. In: Proceedings of 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, pp. 207–210 (2009)Google Scholar
  14. 14.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of International Joint Conference for Artificial Intelligence, pp. 448–453 (1995)Google Scholar
  15. 15.
    Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxomy. In: Proceedings of International Conference Research on Computational Linguistics, pp. 19–33 (1997)Google Scholar
  16. 16.
    Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 296–304 (1998)Google Scholar
  17. 17.
    Bhowmik, P., Rakshit, P., Konar, A., Nagar, A.K., Kim, E.: DE-TDQL: an adaptive memetic algorithm. In: Congress on Evolutionary Computation, pp. 1–8 (June 2012)Google Scholar
  18. 18.
    Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A., Nagar, A.K.: Multi-robot path-planning using artificial bee colony optimization algorithm. In: NaBIC 2011, pp. 219–224 (2011)Google Scholar
  19. 19.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)Google Scholar
  20. 20.
    Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  21. 21.
    Dwight, S., Harris, M., Dolinski, K., Ball, C., Binkley, G., Christie, K., Fisk, D., Issel Tarver, L., Schroeder, M., Sherlock, G.: Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Research 30, 69–72 (2002)CrossRefGoogle Scholar
  22. 22.
    Rakshit, P., Konar, A., Das, S., Nagar, A.K.: ABC-TDQL: AN Adaptive Memetic Algorithm. In: 2013 IEEE Symposium Series on Computational Intelligence, Singapore (accepted, to be published, 2013)Google Scholar
  23. 23.
    Storn, R., Price, K.V.: Differential evolution–A simple and efficient adaptive scheme for global optimization over continuous spaces. Institute of Company Secretaries of India, Chennai, Tamil Nadu. Tech. Report TR-95-012 (1995)Google Scholar
  24. 24.
    Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Archana Chowdhury
    • 1
  • Amit Konar
    • 1
  • Pratyusha Rakshit
    • 1
  • Ramadoss Janarthanan
    • 2
  1. 1.ETCE DepartmentJadavpur UniversityKolkataIndia
  2. 2.CSE DepartmentTJS College of EngineeringChennaiIndia

Personalised recommendations