Meta Heuristic Approaches for Circular Open Dimension Problem

  • N. Madhu Sudana Rao
  • M. Aruna
  • S. Bhuvaneswari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)


This paper discusses the circular open dimension problem (CODP), where set of circles of different radii has to be packed into a rectangular strip of predetermined width and variable length. The circle packing problem is one of the variant of cutting and packing problems. We propose four different nature inspired Meta heuristic algorithms for solving this problem. These algorithms are proved to be the best in finding local solutions. The algorithms are based on food foraging process and breeding behavior of some biological species such as bat, bee, firefly and cuckoo. Circle packing problem is one of the NP hard problems. It is very difficult to solve NP hard problems exactly, so the proposed approaches tries to give approximate solution within the stipulated time. The standard benchmark instances are used for comparison, and it is proved that firefly is giving the best solution.


CODP CPP Meta heuristic local search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akeb, H., Hifi, M., Negre, S.: An augmented beam search-based algorithm for the circular open dimension problem. Comput. Ind. Eng. 61(2), 373–381 (2011)CrossRefGoogle Scholar
  2. 2.
    Stoyan, Y.G., Yas’kov, G.: A mathematical model and a solution method for the problem of placing various-sized circles into a strip. European Journal of Operational Research 156, 590–600 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    He, Y., Wu, Y.: Packing non-identical circles within a rectangle with open length. J. Global Optim. (2012), doi:10.1007/s10898-012-9948-6Google Scholar
  4. 4.
    Huang: Greedy algorithms for packing unequal circles into a rectangular container. Journal of the Operational Research Society 56, 539–548 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fu, Z., Huang, W., Zhipeng: Iterated tabu search for the circular open dimension problem. European Journal of Operational Research 225, 236–243 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hifi, M., Paschos, V.T., Zissimopoulos, V.: A simulated annealing approach for the circular cutting problem. European Journal of Operational Research 159, 430–448 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. International Transactions in Operational Research 5(1), 45–57 (1998)zbMATHGoogle Scholar
  8. 8.
    Lü, Z.P., Hao, J.K.: Adaptive Tabu Search for course timetabling. European Journal of Operational Research 200(1), 235–244 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Maranas, C.D., Floudas, C.A., Pardalos, P.M.: New results in the packing of equal circles in a square. Discrete Mathematics 142(1), 287–293 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Huang, W.Q., Ye, T.: Greedy vacancy search algorithm for packing equal circles in a square. Operations Research Letters 38(5), 378–382 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Huang, W.Q., Ye, T.: Global optimization method for finding dense packings of equal circles in a circle. European Journal of Operational Research 210(3), 474–481 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Altringham, J.D.: Bats: Biology and Behaviour. Oxford Univesity Press (1996)Google Scholar
  14. 14.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK (2005)Google Scholar
  15. 15.
    Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), India, pp. 210–214. IEEE Publications, USA (2009)Google Scholar
  16. 16.
    Yang, X.-S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010)CrossRefGoogle Scholar
  17. 17.

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • N. Madhu Sudana Rao
    • 1
  • M. Aruna
    • 1
  • S. Bhuvaneswari
    • 1
  1. 1.School of ComputingSASTRA UniversityThanjavurIndia

Personalised recommendations