City Block Distance for Identification of Co-expressed MicroRNAs

  • Sushmita Paul
  • Pradipta Maji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)


The microRNAs or miRNAs are short, endogenous RNAs having ability to regulate gene expression at the post-transcriptional level. Various studies have revealed that a large proportion of miRNAs are co-expressed. Expression profiling of miRNAs generates a huge volume of data. Complicated networks of miRNA-mRNA interaction increase the challenges of comprehending and interpreting the resulting mass of data. In this regard, this paper presents the application of city block distance in order to extract meaningful information from miRNA expression data. The proposed method judiciously integrates the merits of robust rough-fuzzy c-means algorithm and normalized range-normalized city block distance to discover co-expressed miRNA clusters. The city block distance is used to calculate the membership functions of fuzzy sets, and thereby helps to handle minute differences between two miRNA expression profiles. The effectiveness of the proposed approach, along with a comparison with other related methods, is demonstrated on several miRNA expression data sets using different cluster validity indices and gene ontology.


MicroRNA co-expressed miRNAs overlapping clustering rough sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., Margalit, H.: Clustering and Conservation Patterns of Human microRNAs. Nucleic Acids Research 33, 2697–2706 (2005)CrossRefGoogle Scholar
  2. 2.
    Bargaje, R., Hariharan, M., Scaria, V., Pillai, B.: Consensus miRNA Expression Profiles Derived from Interplatform Normalization of Microarray Data. RNA 16, 16–25 (2010)CrossRefGoogle Scholar
  3. 3.
    Baskerville, S., Bartel, D.P.: Microarray Profiling of microRNAs Reveals Frequent Coexpression with Neighboring miRNAs and Host Genes. RNA 11, 241–247 (2005)CrossRefGoogle Scholar
  4. 4.
    Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)CrossRefGoogle Scholar
  5. 5.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, X., Hagedorn, C.H., Cullen, B.R.: Human microRNAs are Processed from Capped, Polyadenylated Transcripts that can also Function as mRNAs. RNA 10, 1957–1966 (2004)CrossRefGoogle Scholar
  7. 7.
    Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)CrossRefGoogle Scholar
  8. 8.
    Dembele, D., Kastner, P.: Fuzzy C-Means Method for Clustering Microarray Data. Bioinformatics 19(8), 973–980 (2003)CrossRefGoogle Scholar
  9. 9.
    Fraley, C., Raftery, A.E.: How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal 41(8), 578–588 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ghosh, D., Chinnaiyan, A.M.: Mixture Modelling of Gene Expression Data from Microarray Experiments. Bioinformatics 18, 275–286 (2002)CrossRefGoogle Scholar
  11. 11.
    Hartuv, E., Shamir, R.: A Clustering Algorithm Based on Graph Connectivity. Information Processing Letters 76(4-6), 175–181 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research 9(11), 1106–1115 (1999)CrossRefGoogle Scholar
  13. 13.
    Jiang, D., Pei, J., Zhang, A.: DHC: A Density-Based Hierarchical Clustering Method for Time-Series Gene Expression Data. In: Proceedings of the 3rd IEEE International Symposium on Bioinformatics and Bioengineering, pp. 393–400 (2003)Google Scholar
  14. 14.
    Krishnapuram, R., Keller, J.M.: A Possibilistic Approach to Clustering. IEEE Transactions on Fuzzy Systems 1(2), 98–110 (1993)CrossRefGoogle Scholar
  15. 15.
    Lu, J., Getz, G., Miska, E.A., Saavedra, E.A., Lamb, J., Peck, D., Cordero, A.S., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA Expression Profiles Classify Human Cancers. Nature Letters 435(9), 834–838 (2005)CrossRefGoogle Scholar
  16. 16.
    Maji, P., Pal, S.K.: RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets. Fundamenta Informaticae 80(4), 475–496 (2007)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Maji, P., Paul, S.: Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–14 (2013)Google Scholar
  18. 18.
    Maragkakis, M., Alexiou, P., Papadopoulos, G.L., Reczko, M., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., Simossis, V.A., Sethupathy, P., Vergoulis, T., Koziris, N., Sellis, T., Tsanakas, P., Hatzigeorgiou, A.G.: Accurate microRNA Target Prediction Correlates with Protein Repression Levels. BMC Bioinformatics 10(295) (2009)Google Scholar
  19. 19.
    McLachlan, G.J., Bean, R.W., Peel, D.: A Mixture Model-Based Approach to the Clustering of Microarray Expression Data. Bioinformatics 18, 413–422 (2002)CrossRefGoogle Scholar
  20. 20.
    Pasluosta, C.F., Dua, P., Lukiw, W.J.: Nearest hyperplane distance neighbor clustering algorithm applied to gene co-expression analysis in alzheimer’s disease. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 5559–5562 (2011)Google Scholar
  21. 21.
    Paul, S., Maji, P.: Robust RFCM Algorithm for Identification of Co-Expressed miRNAs. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Philadelphia, USA, pp. 520–523 (2012)Google Scholar
  22. 22.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Resoning About Data. Kluwer, Dordrecht (1991)CrossRefGoogle Scholar
  23. 23.
    Rousseeuw, J.P.: Silhouettes: A Graphical Aid to the Interpration and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shamir, R., Sharan, R.: CLICK: A Clustering Algorithm for Gene Expression Analysis. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, pp. 307–316 (2000)Google Scholar
  25. 25.
    Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation. Proceedings of the National Academy of Sciences, USA 96(6), 2907–2912 (1999)CrossRefGoogle Scholar
  26. 26.
    Xing, E.P., Karp, R.M.: CLIFF: Clustering of High-Dimensional Microarray Data via Iterative Feature Filtering Using Normalized Cuts. Bioinformatics 17(1), 306–315 (2001)CrossRefGoogle Scholar
  27. 27.
    Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzz, W.L.: Model-Based Clustering and Data Transformations for Gene Expression Data. Bioinformatics 17, 977–987 (2001)CrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Sushmita Paul
    • 1
  • Pradipta Maji
    • 1
  1. 1.Biomedical Imaging and Bioinformatics Lab, Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations