Hybrid Neuro-Fuzzy Network Identification for Autonomous Underwater Vehicles

  • Osama Hassanein
  • G. Sreenatha
  • Tapabrata Ray
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)


Autonomous Underwater Vehicles (AUVs) are ideal platforms for aquatic search and rescue operations and exploration. The AUV poses serious challenges due to its complex, inherently nonlinear and time-varying dynamics. In addition, its hydrodynamic coefficients are difficult to model accurately because of their variations under different navigational conditions and manoeuvring in uncertain environments. This paper introduces an identifier scheme for identification of non-linear systems with disturbances based on Hybrid Neuro-Fuzzy Network (HNFN) technique. The method comprises of an automatic structure-generating phase using entropy based technique. The accuracy of the model is suitably controlled using the entropy measure. To improve the accuracy and also for generalization of the model to handle different data sets, Differential Evolution technique (DE) is employed. Finally, Hardware In-Loop (HIL) simulation and real-time experiments using the proposed algorithm to identify the 6-DOF UNSW Canberra AUV’s dynamics are implemented. The modelling performance and generalisation capability are seen to be superior with our method.


Membership Function Differential Evolution Fuzzy Rule Underwater Vehicle Autonomous Underwater Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sjöberg, J., et al.: Nonlinear Black-Box Modeling In System Identification: A Unified Overview. Automatica 31(12), 1691–1724 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Khalik, M.A., et al.: Parameter Identification Problem: Real-Coded GA Approach. Applied Mathematics and Computation 187(2), 1495–1501 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Morgera, S.D., Armour, B.: Structured Maximum Likelihood Autoregressive Parameter Estimation. In: International Conference on Acoustics, Speech, And Signal Processing, ICASSP 1989 (1989)Google Scholar
  4. 4.
    Salman, S.A., Puttige, V.R., Anavatti, S.G.: Real-Time Validation and Comparison of Fuzzy Identification and State-Space Identification for a UAV Platform. In: 2006 IEEE International Conference on Control Applications, Computer Aided Control System Design. IEEE (2006)Google Scholar
  5. 5.
    Soderstrom, T., et al.: Least Squares Parameter Estimation of Continuous-Time ARX Models from Discrete-Time Data. IEEE Transactions on Automatic Control 42(5), 659–673 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kim, J., et al.: Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers. IEEE Journal of Oceanic Engineering 27(4), 830–840 (2002)CrossRefGoogle Scholar
  7. 7.
    Wang, L.X.: Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic Systems. IEEE Transactions on Automatic Control 40(1), 11–23 (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Li, L., Yang, Y., Peng, H.: Fuzzy System Identification via Chaotic Ant Swarm. Chaos, Solitons & Fractals 41(1), 401–409 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Healey, A.J.: Model Based Predictive Control of Auvs for Station Keeping in a Shallow Water Wave Environment, Dtic Document (2005)Google Scholar
  10. 10.
    Petrich, J., Neu, W.L., Stilwell, D.J.: Identification of a Simplified Auv Pitch Axis Model for Control Design: Theory and Experiments. In: Oceans (2007)Google Scholar
  11. 11.
    Conte, G., et al.: Evaluation of Hydrodynamics Parameters of a Uuv. A Preliminary Study. In: First International Symposium on Control, Communications and Signal Processing (2004)Google Scholar
  12. 12.
    Faruq, A., et al.: Optimization of Depth Control for Unmanned Underwater Vehicle Using Surrogate Modeling Technique. In: 2011 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO (2011)Google Scholar
  13. 13.
    Ishii, K., Ura, T., Fujii, T.: A Feedforward Neural Network for Identification and Adaptive Control of Autonomous Underwater Vehicles. In: 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence (1994)Google Scholar
  14. 14.
    Ishii, K., Fujii, T., Ura, T.: A Quick Adaptation Method in a Neural Network Based Control System for Auvs. In: Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, Auv 1994 (1994)Google Scholar
  15. 15.
    Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Inc. (1997)Google Scholar
  16. 16.
    Sun, F., et al.: Neuro-Fuzzy Adaptive Control Based on Dynamic Inversion for Robotic Manipulators. Fuzzy Sets And Systems 134(1), 117–133 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Lei, Z., et al.: Fuzzy Neural Network Control of Auv Based on Ipso. In: IEEE International Conference on Robotics And Biomimetics, Robio 2008 (2008, 2009)Google Scholar
  18. 18.
    Bossley, K.M., Brown, M., Harris, C.J.: Neurofuzzy Identification of an Autonomous Underwater Vehicle. International Journal of Systems Science 30(9), 901–913 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Storn, R., Price, K.V.: Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces (ICSI, USA, Tech. Rep. TR-95-012 (1995),
  20. 20.
    Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. on Evolutionary Computation 15, 4–31 (2011)CrossRefGoogle Scholar
  21. 21.
    Hassanein, O., Sreenatha, G., Ray, T.: Improved Fuzzy Neural Modeling for Underwater Vehicles. Int. J. World Academy of Science, Engineering and Technology 71, 1208–1215 (2012)Google Scholar
  22. 22.
    Cheng-Hung, C., Cheng-Jian, L., Chin-Teng, L.: A Functional-Link-Based Neurofuzzy Network for Nonlinear System Control. IEEE Transactions on Fuzzy Systems 16(5), 1362–1378 (2008)CrossRefGoogle Scholar
  23. 23.
    Patra, J.C., et al.: Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29(2), 254–262 (1999)CrossRefGoogle Scholar
  24. 24.
    Beyhan, S., Alci, M.: Fuzzy Function Based ARX Model and New Fuzzy Basis Function Models for Nonlinear System Identification. Applied Soft Computing J. 10, 439–444 (2010)CrossRefGoogle Scholar
  25. 25.
    Wang, L.X.: A course in fuzzy systems and control. Prentic Hall Inc., USA (1997)zbMATHGoogle Scholar
  26. 26.
    Salman, A., Sreenatha, G., Jin, Y.C.: Indirect Adaptive Fuzzy Control of Unmanned Aerial Vehicle. In: Proc. 17th Congr. Int. Federation of Automatic Control, Seoul, Korea, pp. 13229–13243 (2008)Google Scholar
  27. 27.
    Elsayed, S.M., Sarker, R.A., Essam, D.L.: Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In: Proc. IEEE Congr. on Evolutionary Computation, New Orleans, US, vol. I, pp. 1041–1048 (2011)Google Scholar
  28. 28.
    Chang, C.S., Xu, D.Y.: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system. IEEE Proc. Electric Power Applications 147(3), 206–212 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Osama Hassanein
    • 1
  • G. Sreenatha
    • 1
  • Tapabrata Ray
    • 1
  1. 1.School of Engineering and Information TechnologyUNSW@ADFACanberraAustralia

Personalised recommendations