A Genetic Algorithm Optimized Artificial Neural Network for the Segmentation of MR Images in Frontotemporal Dementia

  • R. Sheela Kumari
  • Tinu Varghese
  • C. Kesavadas
  • N. Albert Singh
  • P. S. Mathuranath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)


Frontotemporal Dementia (FTD) is an early onset dementia with atrophy in frontal and temporal regions. The differential diagnosis of FTD remains challenging because of the overlapping behavioral symptoms in patients, which have considerable overlap with Alzheimer’s disease (AD). Neuroimaging analysis especially Magnetic Resonance Image Imaging (MRI) has opened up a new window to identify, and track disease process and progression. In this paper, we introduce a genetic algorithm (GA) tuned Artificial Neural Network (ANN) to measure the structural changes over a period of 1year. GA is a heuristic optimization method based on the Darwin’s principle of natural evolution. The longitudinal atrophy patterns obtained from the proposed approach could serve as a predictor of impending behavioral changes in FTD subjects. The performance of our computerized scheme is evaluated and compared with the ground truth information. Using the proposed approach, we have achieved an average classification accuracy of 95.5 %, 96.5% and 98% for GM, WM and CSF respectively.


Frontotemporal Dementia (FTD) Alzheimer’s disease (AD) Magnetic Resonance Imaging (MRI) Genetic algorithm (GA) Artificial Neural Network (ANN) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ratnavalli, E., Brayne, C., Dawson, K., Hodges, J.R.: The prevalence of Frontotemporal dementia. Neurology 58(11), 1615–1621 (2002)CrossRefGoogle Scholar
  2. 2.
    Go, C., Mioshi, E., Yew, B., Hodges, J.R., Hornberger, M.: Neural correlates of behavioural symptoms in behavioural variant Frontotemporal dementia and Alzheimer’s disease: Employment of a visual MRI rating scale, Dement Neuropsychol. Dement Neuropsychol. 6(1), 12–17 (2012)Google Scholar
  3. 3.
    Huey, E.D., Goveia, E.N., Paviol, S., Pardini, M., Krueger, F., Zamboni, G., Tierney, M.C., Wassermann, E.M., Grafman, J.: Executive dysfunction in Frontotemporal dementia and Corticobasal syndrome. Neurology 72(5), 453–459 (2009)CrossRefGoogle Scholar
  4. 4.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Massachusetts (1992)Google Scholar
  5. 5.
    Kannan, S.R., Sathya, A., Ramathilagam, S., Devi, R.: Novel segmentation algorithm in segmenting medical images. Journal of Systems and Software 83(12), 2487–2495 (2010)CrossRefGoogle Scholar
  6. 6.
    Kannan, S.R., Ramathilagam, S., Devi, R., Hines, E.: Strong fuzzy c-means in medical image data analysis. Journal of Systems and Software 85(11), 2425–2438 (2012)CrossRefGoogle Scholar
  7. 7.
    He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recognition 45(9), 3463–3471 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Reed, R.T., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. Comput. Vis. Graphics Image Processing 57(3), 359–372 (1993)CrossRefGoogle Scholar
  9. 9.
    Christodoulou, Michaelides, S.C., Pattichis, C.S.: Multifeature Texture Analysis for the Classification of Clouds in Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing 41(11), 2662–2668 (2003)CrossRefGoogle Scholar
  10. 10.
    Yeh, J.Y., Fu, J.C.: A hierarchical genetic algorithm for segmentation of multi-spectral human–brain MRI. Expert Systems with Applications 34(2), 1285–1295 (2008)CrossRefGoogle Scholar
  11. 11.
    Ma, H., Zhang, Y., Jia, G.: Medical images segmentation using modified genetic fuzzy clustering algorithm. Computer Engineering and Design 23(13), 2357–2359 (2006)Google Scholar
  12. 12.
    Jamshidi, O., Pilevar, A.H.: Automatic Segmentation of Medical Images Using Fuzzy c-Means and the Genetic Algorithm. Journal of Computational Medicine, 1–7 (2013)Google Scholar
  13. 13.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(6), 641–646 (1994)Google Scholar
  14. 14.
    Roslan, R., Jamil, N., Mahmud, R.: Skull Stripping Magnetic Resonance Images Brain Images: Region Growing versus Mathematical Morphology. International Journal of Computer Information Systems and Industrial Management Applications (3), 150–158 (2011) ISSN 2150-7988Google Scholar
  15. 15.
    Jafari-Khouzani, K., Siadat, M.R., Soltanian-Zadeh, H., Elisevich, K.: Texture Analysis of Hippocampus for Epilepsy. Proceedings of SPIE (5) (2003)Google Scholar
  16. 16.
    Chiang, C.-L.: Improved Genetic Algorithm for Power Economic Dispatch of Units with Valve-Point Effects and Multiple Fuels. IEEE Transactions on Power Systems 20, 1690–1699 (2005)CrossRefGoogle Scholar
  17. 17.
    Dheeba, J., Tamil Selvi, S.: A CAD System for Breast Cancer Diagnosis Using Modified Genetic Algorithm Optimized Artificial Neural Network. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 349–357. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • R. Sheela Kumari
    • 1
  • Tinu Varghese
    • 2
  • C. Kesavadas
    • 3
  • N. Albert Singh
    • 2
  • P. S. Mathuranath
    • 4
  1. 1.Sree Chitra Tirunal Institute for Medical Science and Technology TrivandrumIndia
  2. 2.Noorul Islam UniversityIndia
  3. 3.Department of RadiologySree Chitra Tirunal Institute for Medical Science and TechnologyTrivandrumIndia
  4. 4.Department of NeurologyNational Institute of Mental Health and NeurosciencesBangloreIndia

Personalised recommendations