Advertisement

Groundwater System Modeling for Pollution Source Identification Using Artificial Neural Network

  • Raj Mohan Singh
  • Divya Srivastava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)

Abstract

Groundwater contamination is serious threat to health of human being and environment. It is difficult and expensive to remediate the polluted aquifers. Identification of unknown pollution sources is first step towards adopting any remediation strategy. The proposed methodology characterizes concentration breakthrough curves in terms of statistical parameter such as average value, maximum value, standard deviation, skewness and kurtosis. The characterized parameters are utilized in a feed forward multilayer artificial neural network (ANN) to identify the sources in terms of its location, magnitudes and duration of activity. The characterized breakthrough curves parameters serve as inputs to ANN model. Unknown pollution source characteristics are outputs for ANN model. Experimentations are performed with different number of training and testing patterns.

Keywords

Breakthrough curve groundwater flow and transport characterization of inputs pollution source identification ANN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atmadja, J., Bagtzoglou, A.C.: Pollution source identification in heterogeneous porous media. Water Resour. Resear. 37, 2113 (2001)CrossRefGoogle Scholar
  2. 2.
    Liu, C., Ball, W.P.: Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware. Water Resour. Res. 35, 1975–1985 (1999)CrossRefGoogle Scholar
  3. 3.
    Gorelick, S.M., Evans, B., Remson, I.: Identifying sources of groundwater pollution: An optimization approach. Water Resour. Res. 19, 779–790 (1983)CrossRefGoogle Scholar
  4. 4.
    Wagner, B.J.: Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling. J. of Hydrol. 135, 275–303 (1992)CrossRefGoogle Scholar
  5. 5.
    Skaggs, T.H., Kabala, Z.H.: Recovering the release history of a groundwater contaminant plume: Method of quasi-reversibility. Water Resour. Res. 31, 2669–2673 (1995)CrossRefGoogle Scholar
  6. 6.
    Skaggs, T.H., Kabala, Z.H.: Limitations in recovering the history of a groundwater contaminant plume. J. Contam. Hydrol. 33, 347–359 (1998)CrossRefGoogle Scholar
  7. 7.
    Woodbury, A.D., Ulrych, T.J.: Minimum relative entropy inversion: the release history of a groundwater contaminant. Water Resour. Res. 32, 2671–2681 (1996)CrossRefGoogle Scholar
  8. 8.
    Woodbury, A.D., Sudicky, E., Ulrych, T.J., Ludwig, R.: Three dimensional plume source reconstruction using minimum relative entropy inversion. J. Contam. Hydrol. 32, 131–158 (1998)CrossRefGoogle Scholar
  9. 9.
    Aral, M.M., Guan, G.: Genetic algorithms in search of groundwater pollution sources. In: Advances in Groundwater Pollution Control and Remediation, pp. 347–369. Spinger (1996)Google Scholar
  10. 10.
    Aral, M.M., Guan, J., Maslia, M.L.: Identification of contaminant source location and release history in aquifers. J. of Hydrologic Engrg. 6, 225–234 (2001)CrossRefGoogle Scholar
  11. 11.
    Singh, R.M., Datta, B., Jain, A.: Identification of unknown groundwater pollution sources using artificial neural networks. Journal of Water Resources Planning and Management, ASCE 130(6), 506–514 (2004)CrossRefGoogle Scholar
  12. 12.
    Sun, A.Y.: A robust geostatistical approach to contaminant source identification. Water Resour. Res. 43, 1–12 (2007)Google Scholar
  13. 13.
    Singh, R.M., Datta, B.: Artificial Neural Network Modeling for Identification of Unknown Pollution Sources in Groundwater with Partially Missing Concentration Observation Data. Water Resources Management 21(3), 557–572 (2007)CrossRefGoogle Scholar
  14. 14.
    Chadalavada, S., Datta, B., Naidu, R.: Optimal identification of groundwater pollution sources using feedback monitoring information: a case study. Environmental Forensics 13(2), 140–153 (2012)CrossRefGoogle Scholar
  15. 15.
    Jha, M., Datta, B.: Three-Dimensional Groundwater Contamination Source Identification Using Adaptive Simulated Annealing. J. Hydrol. Eng. 18(3), 307–317 (2013)CrossRefGoogle Scholar
  16. 16.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error propagation. In: Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar
  17. 17.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, India (1995)Google Scholar
  18. 18.
    Hagan, M.T., Menhaj, M.B.: Training feed forward networks with the Marquaradt algorithm. IEEE Trans. Neural Netw. 6, 861–867 (1994)Google Scholar
  19. 19.
    Kisi, O.: Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12(5), 532–539 (2007)CrossRefGoogle Scholar
  20. 20.
    Haykin, S.: Neural networks: A comprehensive foundation, 696 p. Mac-Millan, New York (1994)Google Scholar
  21. 21.
    Bear, J.: Dynamics of Fluids in Porous Media. Dover Publication Inc., New York (1972)zbMATHGoogle Scholar
  22. 22.
    Bear, J.: Hydraulics of Groundwater. Elsevier, New York (1979)Google Scholar
  23. 23.
    Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall, Inc., N.J. (1979)Google Scholar
  24. 24.
    Pinder, G.F., Bredehoeft, J.D.: Application of the digital computer for aquifer evaluations. Water Resour. Res. 4, 1069–1093 (1968)CrossRefGoogle Scholar
  25. 25.
    Bredehoeft, J.D., Pinder, G.F.: Mass transport in flowing water. Water Resour. Res. 9, 194–210 (1973)CrossRefGoogle Scholar
  26. 26.
    Konikow, L.F., Bredehoeft, J.D.: Computer model of two-dimensional solute transport and dispersion in groundwater. U. S. Geol. Surv. Tech. Water Resources Invest. Book 7 (1978)Google Scholar
  27. 27.
    Datta, B.: Discussion of “Identification of contaminant source location and release history in aquifers” by Mustafa M. Aral, Jiabao Guan, and Morris L. Masia. J. of Hydrologic Engineering 7, 399–401 (2002)CrossRefGoogle Scholar
  28. 28.
    Mahar, P.S.: Optimal identification of groundwater pollution sources using embedding technique. PhD. Thesis, I.I.T., Kanpur (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Raj Mohan Singh
    • 1
  • Divya Srivastava
    • 1
  1. 1.Department of Civil EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations