Advertisement

Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory

  • Soumen Kumar Pati
  • Asit Kumar Das
  • Arka Ghosh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8298)

Abstract

Feature selection is one of the most key problems in the field of machine learning and data mining. It can be done in mainly two different ways, namely, filter approach and wrapper approach. Filter approach is independent of underlying classifier logic and relatively less costly than the wrapper approach which is classifier dependent. Many researchers have applied Genetic algorithm (GA) as wrapper approach for feature selection. In the paper, a novel feature selection method is proposed based on the multi-objective genetic algorithm which is applied on population generated by non-linear uniform hybrid cellular automata. The fitness functions are defined one using set lower bound approximation of rough set theory and the other using Kullbak-Leibler divergence method. A comparative study between proposed method and some leading feature selection methods are given using some popular microarray cancer dataset to demonstrate the effectiveness of the method.

Keywords

Feature selection Genetic algorithm Multi-objective Evolutionary algorithm Set lower bound approximation Kullback-Leibler divergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research 5, 1205–1224 (2004)zbMATHGoogle Scholar
  2. 2.
    Hall, M.A.: Correlation-based feature selection for machine learning. Diss., The University of Waikato (1999)Google Scholar
  3. 3.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine Learning 3(2), 95–99 (1988)CrossRefGoogle Scholar
  4. 4.
    Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Schwefel, P.H.: Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Inc. (1993)Google Scholar
  6. 6.
    Coello Coello, A.C., Lamont, B.G., Van Veldhuisen, D.A.: Evolutionary algorithms for solving multi-objective problems. Springer (2007)Google Scholar
  7. 7.
    Multi-objective Evolutionary Algorithms: A Survey of the State-of-the-art. Swarm and Evolutionary Computation 1(1), 32–49 (2011)Google Scholar
  8. 8.
    Zhou, A., Suganthan, P.N., Zhang, Q.: Decomposition Based Multiobjective Evolutionary Algorithm with an Ensemble of Neighborhood Sizes. IEEE Trans. on Evolutionary Computation 16(3), 442–446 (2012)CrossRefGoogle Scholar
  9. 9.
    Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multi-objective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1. IEEE (2000)Google Scholar
  10. 10.
    Zitzler, E., Lothar, T.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  11. 11.
    Van Veldhuisen, D.A., Lamont, G.B.: Multi-objective evolutionary algorithm research: A history and analysis. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1998)Google Scholar
  12. 12.
    Mumford, C.L.: Simple population replacement strategies for a steady-state multi-objective evolutionary algorithm. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1389–1400. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Deb, K.: Multi-objective optimization. In: Multi-objective Optimization Using Evolutionary Algorithms, pp. 13–46 (2001)Google Scholar
  14. 14.
    Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951), doi:10.1214/aoms/1177729694Google Scholar
  15. 15.
    Chaconas, G., Lavoie, B.D., Watson, M.A.: DNA transposition: jumping gene machine, some assembly required. Current Biology: CB 6(7), 817 (1996)CrossRefGoogle Scholar
  16. 16.
    Von Neumann, J.: Theory of self-reproducing automata (1966)Google Scholar
  17. 17.
    Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99(1), 48–57 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Turing, A.: Universal Turing machineGoogle Scholar
  19. 19.
    Cover, T., et al.: Elements of information theory. Telecommunications, Wiley series (1991)Google Scholar
  20. 20.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Soumen Kumar Pati
    • 1
  • Asit Kumar Das
    • 2
  • Arka Ghosh
    • 3
  1. 1.Department of Computer Science/Information TechnologySt. Thomas‘ College of Engineering and TechnologyKolkataIndia
  2. 2.Department of Computer Science and TechnologyBengal Engineering and Science UniversityHowrahIndia
  3. 3.Purabi Das School of Information TechnologyBengal Engineering and Science UniversityHowrahIndia

Personalised recommendations