Advertisement

Inter-species Cuckoo Search via Different Levy Flights

  • Swagatam Das
  • Preetam Dasgupta
  • Bijaya Ketan Panigrahi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8297)

Abstract

In this paper we improve the meta heuristic algorithm known as Cuckoo Search (CS) to solve optimization problems. The proposed Inter-species Cuckoo Search (ISCS) algorithm is based on the brood parasitic behavior of different inter-related cuckoo species in different areas in combination with Levy flight behavior(which changes with the terrain) of birds. The proposed algorithm is then tested against various test functions and its performance is compared with genetic algorithms, particle swarm optimization and previous versions of Cuckoo Search algorithm.

Keywords

clustering inter-species cuckoo search Levy flight metaheuristics optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, X.-S., Deb, S.: Engineering Optimisation by Cuckoo Search. Int. J. Mathematical Modelling and Numerical Optimisation 1(4), 330–343 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Yang, X.S., Deb, S.: Engineering Optimisation by Cuckoo Search. Int. J. of Mathematical Modelling and Numerical Optimisation 1(4), 330–343 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press (1999)Google Scholar
  5. 5.
    Deb, K.: Optimisation for Engineering Design. Prentice-Hall, New Delhi (1995)Google Scholar
  6. 6.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  7. 7.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)CrossRefGoogle Scholar
  8. 8.
    Yang, X.S.: Biology-derived algorithms in engineering optimizaton. In: Olarius, Zomaya (eds.) Handbook of Bioinspired Algorithms and Applications, ch.32. Chapman & Hall / CRCGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Academic Press (2001)Google Scholar
  10. 10.
    Payne, R.B., Sorenson, M.D., Klitz, K.: The Cuckoos. Oxford University Press (2005)Google Scholar
  11. 11.
    Brown, C., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecol. 35, 129–138 (2007)CrossRefGoogle Scholar
  12. 12.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Pavlyukevich, I.: Cooling down Lévy flights. J. Phys. A: Math. Theor. 40, 12299–12313 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2, e354 (2007)Google Scholar
  15. 15.
    Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.): Lévy Flights and Related Topics in Phyics. Springer (1995)Google Scholar
  16. 16.
    Shlesinger, M.F.: Search research. Nature 443, 281–282 (2006)CrossRefGoogle Scholar
  17. 17.
    Chattopadhyay, R.: A study of test functions for optimization algorithms. J. Opt. Theory Appl. 8, 231–236 (1971)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Schoen, F.: A wide class of test functions for global optimization. J. Global Optimization 3, 133–137 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Shang, Y.W., Qiu, Y.H.: A note on the extended rosenrbock function. Evolutionary Computation 14, 119–126 (2006)CrossRefGoogle Scholar
  20. 20.
    Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society, Series C (Applied Statistics) 28(1), 100–108 (1979)zbMATHGoogle Scholar
  21. 21.
    Ding, C., He, X.: K-means Clustering via Principal Component Analysis. In: Proc. of Int’l Conf. Machine Learning (ICML), pp. 225–232 (July 2004)Google Scholar
  22. 22.
    Winkel, M.: Introduction to Lévy processes. pp. 15–16 (retrieved January 07, 2013)Google Scholar
  23. 23.
    Alamgir, M., von Luxburg, U.: Multi-agent random walks for local clustering on graphs. In: IEEE 10th International Conference on Data Mining (ICDM), pp. 18–27 (2010)Google Scholar
  24. 24.
    Sijbers, J., den Dekker, A.J., Raman, E., Van Dyck, D.: Parameter estimation from magnitude MR images. International Journal of Imaging Systems and Technology 10(2), 109–114 (1999)CrossRefGoogle Scholar
  25. 25.
    Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model based on cuckoo search. International Journal of Bio-inspired Computation 4(5), 278–285 (2012)CrossRefGoogle Scholar
  26. 26.
    Marichelvam, M.K.: An improved hybrid Cuckoo Search (IHCS) metaheuristics algorithm for permutation flow shop scheduling problems. International Journal of Bio-inspired Computation 4(4), 200–205 (2012)CrossRefGoogle Scholar
  27. 27.
    Gherboudj, A., Layeb, A., Chikhi, S.: Solving 0-1 knapsack problems by a discrete binary version of cuckoo search algorithm. International Journal of Bio-inspired Computation 4(4), 229–236 (2012)CrossRefGoogle Scholar
  28. 28.
    Swagatam, D., Suganthan, P.N.: Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Technical Report (December 2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Swagatam Das
    • 1
  • Preetam Dasgupta
    • 2
  • Bijaya Ketan Panigrahi
    • 3
  1. 1.Indian Statistical InstituteKolkataIndia
  2. 2.Jadavpur UniversityKolkataIndia
  3. 3.Indian Institute of TechnologyIndia

Personalised recommendations