Bi-objective Optimization in Identical Parallel Machine Scheduling Problem

  • Sankaranarayanan Bathrinath
  • S. Saravana Sankar
  • S. G. Ponnambalam
  • B. K. V. Kannan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8297)


This paper presents bi-objective identical parallel machine scheduling problem with minimization of weighted sum of makespan and number of tardy jobs simultaneously. It is a known fact that identical parallel machine scheduling problem with makespan and number of tardy jobs based criteria is NP hard. Metaheuristics has become most important choice for solving NP hard problems because of their multi-solution and strong neighborhood search capabilities in a reasonable time. In this work Simulated Annealing Algorithm (SA) and Genetic Algorithm (GA) has been proposed to optimize two different objectives namely (i) minimization of make span (ii) minimization of number of tardy jobs using combined objective function (COF). The effectiveness of the proposed algorithm have been analyzed by means of benchmark problem taken from the literatures and relative performance measures for the algorithm have also been computed and analyzed. Computational results show that GA outperforms SA by a considerable margin.


Identical parallel machine scheduling Genetic Algorithm Simulated Annealing Algorithm make span number of tardy jobs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. Springer (2012)Google Scholar
  2. 2.
    Graham, R.L.: Bounds on Multiprocessor Timing Anomalies. SIAM Journal of Applied Mathematics 17, 416–429 (1969)CrossRefzbMATHGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  4. 4.
    Lee, C.Y., Massey, J.D.: Multiprocessor Scheduling: Combining LPT and MULTIFIT. Discrete Applied Mathematics 20, 233–242 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fatemi Ghomi, S.M.T., Jolai Ghazvini, F.: A pairwise interchange algorithm for parallel machine scheduling. Production Planning and Control 9(7), 685–689 (1998)CrossRefGoogle Scholar
  6. 6.
    Riera, J., Alcaide, D., Sicilia, J.: Approximate algorithms for the P||Cmax problem. TOP 4, 345–359 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gupta, J.N.D., Ruiz-Torres, A.J.: A LISTFIT heuristic for minimizing makes span on Identical Parallel Machines. Production Planning and Control 12, 28–36 (2001)CrossRefGoogle Scholar
  8. 8.
    Lee, W.C., Wu, C.C., Chen, P.: A Simulated Annealing approach to make span minimization on Identical Parallel Machines. International Journal of Advanced Manufacturing Technology 31, 328–334 (2006)CrossRefGoogle Scholar
  9. 9.
    Ali, H.K., Behrooz, K.: A Discrete particle Swarm Optimization algorithm for Scheduling Parallel Machines. Computers and Industrial Engineering 56, 216–223 (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, J., Pan, Q.-K., Wang, L., Li, J.-Q.: A hybrid dynamic harmony search algorithm for identical parallel machines scheduling. Engineering Optimization 44(2), 209–224 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Liang, Y.-C., Hsiao, Y.-M., Tien, C.-Y.: Metaheuristics for drilling operation scheduling in Taiwan PCB industries. Int. J. Production Economics 141(1), 189–198 (2013)CrossRefGoogle Scholar
  12. 12.
    Gupta, J.N.D., Ruiz-Torres, A.J., Webster, S.: Minimizing maximum tardiness and number of tardy jobs on parallel machines subject to minimum flow-time. Journal of the Operational Research Society 54, 1263–1274 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Briand, C., Ourari, S.: Minimizing the number of tardy jobs for the single machine scheduling problem: MIP-based lower and upper bounds. RAIRO - Operations Research 47(01), 33–46 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fan, B., Yuan, J., Li, S.: Bi-criteria scheduling on a single parallel-batch machine. Applied Mathematical Modelling 36(3), 1338–1346 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yin, Y., Wu, C.-C., Wu, W.-H., Hsu, C.-J., Wu, W.-H.: A branch-and-bound procedure for a single-machine earliness scheduling problem with two agents. Applied Soft Computing 13(2), 1042–1054 (2013)CrossRefGoogle Scholar
  16. 16.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, USA (1989)zbMATHGoogle Scholar
  17. 17.
    Samur, S., Bulkan, S.: An Evolutionary Solution to a Multi-objective Scheduling Problem. In: Proceedings of the World Congress on Engineering, London, UK, June 30-July 02, vol. 3 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Sankaranarayanan Bathrinath
    • 1
  • S. Saravana Sankar
    • 1
  • S. G. Ponnambalam
    • 2
  • B. K. V. Kannan
    • 3
  1. 1.Kalasalingam UniversityKrishanankoilIndia
  2. 2.Department of MechatronicsMonash UniversityPetaling JayaMalaysia
  3. 3.Theni Kammavar Sangam College of TechnologyTheniIndia

Personalised recommendations