Advertisement

Data Clustering with Differential Evolution Incorporating Macromutations

  • Goran Martinović
  • Dražen Bajer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8297)

Abstract

Data clustering is one of the fundamental tools in data mining and requires the grouping of a dataset into a specified number of nonempty and disjoint subsets. Beside the usual partitional and hierarchical methods, evolutionary algorithms are employed for clustering as well. They are able to find good quality partitions of the dataset and successfully solve some of the shortcomings that the k-means, being one of the most popular partitional algorithms, exhibits. This paper proposes a differential evolution algorithm that includes macromutations as an additional exploration mechanism. The application probability and the intensity of the macromutations are dynamically adjusted during runtime. The proposed algorithm was compared to four variants of differential evolution and one particle swarm optimization algorithm. The experimental analysis conducted on a number of real datasets showed that the proposed algorithm is stable and manages to find high quality solutions.

Keywords

Data clustering Davies-Bouldin index differential evolution macromutations representative points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666 (2010)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)CrossRefGoogle Scholar
  3. 3.
    Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. WIREs Data Mining Knowl. Discov. 2, 86–97 (2012)CrossRefGoogle Scholar
  4. 4.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)Google Scholar
  5. 5.
    Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., De Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. IEEE Trans. Sys. Man Cyber. Part C 39, 133–155 (2009)CrossRefGoogle Scholar
  6. 6.
    Laszlo, M., Mukherjee, S.: A genetic algorithm that exchanges neighboring centers for k-means clustering. Pattern Recogn. Lett. 28, 2359–2366 (2007)CrossRefGoogle Scholar
  7. 7.
    Kwedlo, W.: A clustering method combining differential evolution with the K-means algorithm. Pattern Recogn. Lett. 32, 1613–1621 (2011)CrossRefGoogle Scholar
  8. 8.
    Hatamlou, A., Abdullah, S., Nezamabadi-pour, H.: A combined approach for clustering based on k-means and gravitational search algorithms. Swarm Evol. Comput. 6, 47–52 (2012)CrossRefGoogle Scholar
  9. 9.
    Chuang, L.Y., Lin, Y.D., Yang, C.H.: An Improved Particle Swarm Optimization for Data Clustering. In: International MultiConference of Engineers and Computer Scientists, Hong Kong, vol. 1 (2012)Google Scholar
  10. 10.
    Zou, W., Zhu, Y., Chen, H., Sui, X.: A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm. Discret. Dyn. Nat. Soc., 16 pages (2010)Google Scholar
  11. 11.
    Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Comput. Stat. Data Anal. 50, 1220–1247 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Verdramin, L., Campello, R.J.G.B., Hruschka, E.R.: Relative Clustering Validity Criteria: A Comparative Overview. Stat. Anal. Data Min. 3, 209–235 (2010)MathSciNetGoogle Scholar
  13. 13.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  14. 14.
    Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 11, 342–359 (1997)MathSciNetGoogle Scholar
  15. 15.
    Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15, 4–31 (2011)CrossRefGoogle Scholar
  16. 16.
    Jones, T.: Crossover, Macromutation, and Population-based Search. In: 6th International Conference on Genetic Algorithms, pp. 73–80. Morgan Kaufmann, San Francisco (1995)Google Scholar
  17. 17.
    Bache, K., Lichman, M.: UCI Machine Learning Repository. School of Information and Computer Sciences, University of California, http://archive.ics.uci.edu/ml
  18. 18.
    Pal, S.K., Dutta Majumder, D.: Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Trans. Syst., Man, Cybern. 7, 625–629 (1977)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhan, Z.-H., Zhang, J.: Enhance Differential Evolution with Random Walk. In: 14th International Conference on Genetic and Evolutionary Computation Conference Companion, pp. 1513–1514. ACM, New York (2012)Google Scholar
  20. 20.
    Das, S., Abraham, A., Konar, A.: Automatic Clustering Using an Improved Differential Evolution Algorithm. IEEE Trans. Sys. Man Cyber. Part A 38, 218–237 (2008)CrossRefGoogle Scholar
  21. 21.
    Das, S., Konar, A.: Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9, 226–236 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Goran Martinović
    • 1
  • Dražen Bajer
    • 1
  1. 1.Faculty of Electrical EngineeringJ. J. Strossmayer University of OsijekOsijekCroatia

Personalised recommendations