Advertisement

A Soft-Computing Based Approach to Economic and Environmental Analysis of an Autonomous Power Delivery System Utilizing Hybrid Solar – Diesel – Electrochemical Generation

  • Trina Som
  • Niladri Chakraborty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8297)

Abstract

Concerns toward the continued availability of reliable grid-based power and global warming and depleting oil reserves have made a decentralized power delivery model seeking energy from renewable energy resources an inevitability. Photovoltaic power generating modules (PV), diesel generators (DG), battery energy storage systems (BESS) are emerging generation/storage technologies. The present work depicts the economic analysis and environmental impacts of a decentralized or distributed power delivery system integrated with hybrid distributed energy resources (DERs). The model for decentralized power delivery system has been developed employing a modified form of the differential evolution algorithm implemented within MATLAB® Simulink considering load demand scenario for a locality in India. Optimal power generation has been made using different sets of distributed energy resources, pertaining to cost estimation and respective environmental impact. The results show a cost effective power delivering network for hybrid DG-BESS, but PV-BESS is more beneficial from the environmental perspective.

Keywords

hybrid-Distributed Energy Resources Modified Differential Evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jhonson, R.A., Agrawal, A.N., Chubb, T.J.: Simulink Model for Economic Analysis and En-vironmental Impacts of a PV With Diesel-Battery System for Remote Villages. IEEE Transactions on Power System 20(2), 692–700 (2005)CrossRefGoogle Scholar
  2. 2.
    Fyfe, W.S., Powell, M.A., Hart, B.R., Ratanasthien, B.: A global crisis: Energy in the future. Nonre-newable Resources, 187–195 (1993)Google Scholar
  3. 3.
    Lasserter, R., Akhil, A., Marnay, C., Stephens, H., Dagle, J., Guttromson, R., Meliopoulous, A.S., Yinger, R., Eto, J.: The CERTS Microgrid Concept, White paper for CERTS (2002)Google Scholar
  4. 4.
    Bhattacharyya, S.C.: Energy access problem of the poor in India: Is rural electrification a remedy? Energy Policy 34(18), 3387–3397 (2006)CrossRefGoogle Scholar
  5. 5.
    Hernandez-Aramburo, C.A., Green, T.C., Mugniot, N.: Fuelconsumption minimization of a microgrid. IEEE Trans. Ind. Appl. 41(3), 673–681 (2005)CrossRefGoogle Scholar
  6. 6.
    Marnay, C., Venkataramanan, G., Stadler, M., Siddiqui, A., Firestone, R., Chandran, B.: Optimal Technology Selection and Operation of Commercial-Building Microgrids. IEEE Trans. Power Systems 23(3), 975 (2008)CrossRefGoogle Scholar
  7. 7.
    Michiel, H., Petra, H., Bouwmans, I.: Socio-Technical Complexity in Energy Infrastruc-tures Conceptual Framework to Study the Impact of Domestic Level Energy Generation, Storage and Exchange. In: IEEE Int. Conf. Systems Man, and Cybernetics, October 8-11 (2006)Google Scholar
  8. 8.
    Maribua, M., Firestone, K., Ryan, M., Marnay, C., Siddiquica, A.: Distributed energy resources market diffusion model. Elsevier Energy Policy, 4471–4484 (April 2007)Google Scholar
  9. 9.
    Patterson, W.D., Whitham, J.W.: The Virtual Power Plant, Standard & Poor’s Utilities & Perspectives Special Technology Issue. McGraw-Hill Co. (1998)Google Scholar
  10. 10.
    Marin, F., Rey, A.B., Guerrero, A., de Ruz, F.A.: A future microgrid implementation based on renewable distributed resources for a clean green energy production. In: Proc. IEEE PES Winter Meeting, CERTS, pp. 305–308 (2002)Google Scholar
  11. 11.
    Miranda, V., Srinivasan, D., Proenca, L.M.: Evolutionary Computation in power system. International Journal of Electric power & Energy System 20(2), 89–98 (1998)CrossRefGoogle Scholar
  12. 12.
    Farhat, I.A., EI-Hawary, M.E.: Optimization methods applied for solving the short-term hydrothermal co–ordination problem. Electric Power System Research 79(9) (September 2009)Google Scholar
  13. 13.
    Mandal, K.K., Basu, M., Chakraborty, N.: Particle swarm optimization – based fuzzy satisfying method for economic environmental dispatch of hydrothermal power systems. International Journal of Automation and Control (3), 216–239 (2009)Google Scholar
  14. 14.
    Chen-Ching, L., Dillon, T.: State of the art of expert system application to power systems. International Journal of Electric Power & Energy System 14(2-3), 95–96 (1992)Google Scholar
  15. 15.
    AlRashidi, M.R., EI- Hawary, M.E.: Application of computational intelligence techniques for solving the revived optimal power flow problem. Electric Power System Research 79(4), 694–702 (2009)CrossRefGoogle Scholar
  16. 16.
    Marnay, C., Robio, F., Siddiqui, A.: Fuel Consumption Minimization of Microgrid. In: Proc. IEEE PES Winter Meeting, pp. 150–153 (2001)Google Scholar
  17. 17.
    Mallipeddi, R., Suganthan, P.N.: Efficient Constraint Handling for Optimal Reactive Power Dispatch Problem. Swarm and Evolutionary Computation 5, 28–36 (2012)CrossRefGoogle Scholar
  18. 18.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  19. 19.
    Meliopoulos, A.P.S.: Challenges in simulation and design of grids. In: Proc. IEEE PES Winter Meeting, pp. 309–314 (2002)Google Scholar
  20. 20.
    Marin, F., Rey, A.B., Guerrero, A., de Ruz, F.A.: A future microgrid implementation based on renewable distributed resources for a clean green energy production. In: Proc. IEEE PES Winter Meeting, CERTS, pp. 305–308 (2002)Google Scholar
  21. 21.
    Marnay, C., Robio, F., Siddiqui, A.: Fuel Consumption Minimization of Microgrid. In: Proc. IEEE PES Winter Meeting, pp. 150–153 (2001)Google Scholar
  22. 22.
    Meliopoulos, A.P.S.: Challenges in simulation and design of grids. In: Proc. IEEE PES Winter Meeting, pp. 309–314 (2002)Google Scholar
  23. 23.
    Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: Smart Energy Management System for Optimal Microgrid Economic Operation. IET Renewable Power Generation 5(3), 258–267 (2011)CrossRefGoogle Scholar
  24. 24.
    Cooper, K., Dasgupta, A., Kennedy, K., Koelbel, C.: New Grid Scheduling and Re-Scheduling Methods in GRADs Project. In: Proceedings on 18th International Symposium on Parallel and Distributed ProcessingGoogle Scholar
  25. 25.
    Shi, R., Cui, C., Su, K., Zain, Z.: Comparison Study of Two Meta-Heuristic Algorithms with their Applications to Distributed Generation Planning. Energy Procedia 12, 245–252 (2011)CrossRefGoogle Scholar
  26. 26.
    Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: Optimal Allocation and Economic Analysis of Energy storage System in Microgrids. IEEE Transactions on Power Electronics 26(10), 2762–2773Google Scholar
  27. 27.
    Niknam, T., Golestaneh, F., Shafiei, M.: Probabilistic Energy Management of a Renewable Microgrid with Hydrogen storage using Self adaptive Charge Search Algorithm. Energy (2012)Google Scholar
  28. 28.
    Zoka, Y., Sugimoto, A., Yorino, N., Kawahara, K., Kubokawa, J.: An economic evaluation for an autonomous independent network of distributed energy resources. Electric Power System Research 77(7), 831–838 (2007)CrossRefGoogle Scholar
  29. 29.
    Stand-Alone Photovoltaic Systems: A Handbook of Recommended Design Practices (Revised), Sandia National Labs, Albuquerque (1995)Google Scholar
  30. 30.
    Dawson, F.P., Dewan, S.B.: Remote diesel generator with photovoltaic cogeneration. In: Proc. Solar Conf., Denver, CO, pp. 269–274 (September 1989)Google Scholar
  31. 31.
    Farhat, F.A., Simoes, M.G.: Itegration of Alternative Sources of Energy. John Wiley & Sons, Inc. (2006)Google Scholar
  32. 32.
    Wikipedia contributors. List of countries by greenhouse gas emissions, http://en.wikipedia.org/wiki/List_of_countries_by_greenhouse_gas_emissions
  33. 33.
  34. 34.
    Lampinen, J.: A Constraint Handling Approach for Differential Evolution Algorithm. In: Proc. of the Congress on Evolutionary Computation, vol. 2, pp. 1468–1473 (2002)Google Scholar
  35. 35.
    Mezura–Montes, E., Velazquez–Reyes, J., Coello Coello, C.A.: Modified Differential Evolution of Constrained Optimization. IEEE Congress on Evolutionary Computation Sheraton (July 2006)Google Scholar
  36. 36.
    Bhattacharya, A.B., Kar, S.K., Bhattacharya, R.: Diffuse Solar Radiation and associated meteorological pa-rameters in India. Annales Geophysicae 14(10), 1051–1059 (1994)Google Scholar
  37. 37.
    Kolhe, M., Kolhe, S., Joshi, J.C.: Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India. Energy Economics 24(2), 155–165 (2002)CrossRefGoogle Scholar
  38. 38.
    Hunt, G.W.: Operational experience and performance characteristics of a valve-regulated lead–acid bat-tery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant. Journal of Power Sources 78, 171–175 (1999)CrossRefGoogle Scholar
  39. 39.
    Dvoskin, D., Heady, E.O.: Commodity Prices and Resource Use Under Various Energy Alter-natives in Agriculture. Western Journal of Agricultural Economics, 53–62 (1977)Google Scholar
  40. 40.
    Private communication: E & M State Head Office, IIT kharagpur, West Bengal, IndiaGoogle Scholar
  41. 41.
    Hybrid mini-grids for rural electrification: lessons learned. USAID: Alliance for rural electrification, http://www.ruralelec.org/fileadmin/DATA/Documents/06_Publications/Position_papers/ARE_Mini-grids_-_Full_version.pdf

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Trina Som
    • 1
  • Niladri Chakraborty
    • 1
  1. 1.Department of Power EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations