Skip to main content

VLSI Implementation of Low-Power and High-SFDR Digital Frequency Synthesizer for Underwater Instruments and Network Systems

  • Conference paper
  • First Online:
  • 2041 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 152))

Abstract

COordinate Rotation DIgital Computer (CORDIC) is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS) based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM (4 × 16-bit) and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab® simulations and then implemented with FPGA (field programmable gate array) by Verilog®. The spurious-free dynamic range (SFDR) is 118.2 dBc, and the signal-to-noise ratio (SNR) is 81.12 dB. The scaling-free CORDIC based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for underwater instruments and network systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Tierney, C. Rader, B. Gold, IEEE Trans. Audio Electroacoust. 19(1), 48 (1971)

    Article  Google Scholar 

  2. S. Chen, M. Zhao, G. Wu, C. Yao, J. Zhang, Comput. Math. Methods Med. 2012, 101536 (2012)

    Google Scholar 

  3. Z. Teng, A.J. Degnan, U. Sadat et al., J. Cardiovasc. Magn. Reson. 13, 64 (2011)

    Article  Google Scholar 

  4. S. Chen, X. Li, Comput. Math. Methods Med. 2012, AID 613465 (2012)

    Google Scholar 

  5. J. Vankka, IEEE Proceedings of the Frequency Control Symposium, p. 942, June 1996

    Google Scholar 

  6. S.C. Yi, K.T. Lee, J.J. Chen, C.H. Lin, IEEE Canadian Conference on Electrical and Computer Engineering, p. 963, May 2006

    Google Scholar 

  7. D.A. Sunderland, R.A. Srauch, S.S. Wharfield, H.T. Peterson, C.R. Cole, IEEE J. Solid-State Circ. 19(4), 497 (1984)

    Article  Google Scholar 

  8. H.T. Nicholas, H. Samueli, B. Kim, IEEE 42nd Annual Frequency Control Symposium, p. 357, June 1988

    Google Scholar 

  9. L.A. Weaver, R.J. Kerr, High resolution phase to sine amplitude conversion, U.S. Patent 4 905 177 (1990)

    Google Scholar 

  10. A. Bonfanti, D. De Caro, A.D. Grasso, S. Pennisi, S.C. Samori, A.G.M. Strollo, IEEE J. Solid-State Circ. 43(6), 1403 (2008)

    Article  Google Scholar 

  11. A. Bellaouar, M.S. O’Brecht, A.M. Fahim, M.I. Elmasry, IEEE J. Solid-State Circ. 35(3), 385 (2000)

    Article  Google Scholar 

  12. A. Bellaouar, M.S. O’Brecht, M.I. Elmasry, Low-power direct digital frequency synthesizer architecture, U.S. Patent 5 999 581 (1999)

    Google Scholar 

  13. M.M. El Said, M.I. Elmasry, IEEE Int. Symp. Circuits Syst. 5, 437 (2002)

    Google Scholar 

  14. G.C. Gielis, R. Van de Plassche, J. Van Valburg, IEEE J. Solid-State Circ. 26(11), 1645 (1991)

    Article  Google Scholar 

  15. D. De Caro, E. Napoli, A.G.M. Strollo, IEEE Trans. Circ. Syst. II Express Briefs 51(7), 337 (2004)

    Article  Google Scholar 

  16. Y.H. Chen, Y.A. Chau, IEEE Trans. Consum. Electron. 56(2), 436 (2010)

    Article  Google Scholar 

  17. H. Jafari, A. Ayatollahi, S. Mirzakuchako, IEEE Conference on Electron Devices and Solid-State Circuits, p. 829 (2005)

    Google Scholar 

  18. A. Ashrafi, R. Adhami, IEEE Trans. Circ. Syst. I Regul. Pap. 54(10), 2252 (2007)

    Article  Google Scholar 

  19. S. Nahm, K. Han, W. Sung, IEEE Int. Symp. Circ. Syst. 4, 385 (1998)

    Google Scholar 

  20. A. Madisetti, A.Y. Kwentus, A.N. Willson, IEEE J. Solid-State Circ. 34, 1034 (1999)

    Article  Google Scholar 

  21. A. Madisetti, A.Y. Kwentus, Method and apparatus for direct digital frequency synthesizer, U.S. Patent 5 737 253 (1998)

    Google Scholar 

  22. E. Grayver, B. Daneshrad, IEEE Int. Symp. Circ. Syst. 5, 241 (1998)

    Google Scholar 

  23. C.Y. Kang, E.E. Swartzlander Jr, IEEE Trans. Circ. Syst. I Regul. Pap. 53(5), 1035 (2006)

    Article  Google Scholar 

  24. T.Y. Sung, H.C. Hsin, IET Comput. Digital Tech. 1(5), 581 (2007)

    Article  Google Scholar 

  25. T.Y. Sung, L.T. Ko, H.C. Hsin, IEEE International Symposium on Circuits and Systems, p. 249, May 2009

    Google Scholar 

  26. S. Sharma, P.N. Ravichandran, S. Kulkarni, M. Vanitha, P. Lakshminarsimahan, International Conference on Advances in Recent Technologies in Communication and Computing, p. 266, October 2009

    Google Scholar 

  27. D. De Caro, N. Petra, A. Strollo, IEEE Trans. Circ. Syst. I Regul. Pap. 56(2), 364 (2009)

    Article  Google Scholar 

  28. J. Volder, IRE Trans. Electron. Comput. EC-8(3), 330 (1959)

    Google Scholar 

  29. J.S. Walther, Proceedings of the Spring Joint Computer Conference, p. 379 May 1971

    Google Scholar 

  30. S. Chen, W. Huang, C. Cattani, G. Altieri, Math. Prob. Eng. 2012, 732698 (2012)

    Google Scholar 

  31. W. Huang, S.Y. Chen, J. Stat. Mech: Theory Exp. (JSTAT) 2011(12), P12004 (2011)

    Article  Google Scholar 

  32. H. Shi, W. Wang, N.M. Kwok, S.Y. Chen, Sensors 12(7), 9055 (2012)

    Article  Google Scholar 

  33. C. Cattani, S.Y. Chen, G. Aldashev, Math. Prob. Eng. 2012, AID 868413 (2012)

    Google Scholar 

  34. Y.H. Hu, IEEE Sig. Process. Mag. 9(3), 16 (1992)

    Article  Google Scholar 

  35. K. Maharatna, A.S. Dhar, S. Banerjee, Sig. Process. 81(9), 1813 (2001)

    Article  Google Scholar 

  36. T.Y. Sung, IEE Proc. Vis. Image Sig. Process. 53(4), 405 (2006)

    Google Scholar 

  37. C. Cattani, Comput. Math. Methods Med. 2012, AID 673934 (2012)

    Google Scholar 

  38. M. Li, Comput. Math. Methods Med. 2012 (2012)

    Google Scholar 

  39. S. Chen, Y. Zheng, C. Cattani, W. Wang, Comput. Math. Methods Med. 2012, 769702 (2012)

    Google Scholar 

  40. C. Cattani, Telecommun. Syst. Spec. Issue Traffic Model. Comput. Appl. 2009, 207 (2009)

    Google Scholar 

  41. http://www.smims.com. Accessed SMIMS Technology Corp (2010)

  42. http://model.com/content/modelsim-pe-simulation-and-debug. Accessed ModelSim– Simulation and Debug (2010)

  43. http://www.xilinx.com/products/. Accessed Xilinx FPGA Products (2010)

  44. TSMC (Taiwan Semiconductor Manufacturing Company), Hsinchu City, Taiwan, and CIC (National Chip Implementation Center), National Science Council, Hsinchu City, Taiwan: TSMC 0.18 CMOS Design Libraries and Technical Data, v.1.6 (2010)

    Google Scholar 

  45. http://www.cadence.com/products/pages/default.aspx. Accessed Cadence Design Systems (2010)

  46. D. Prutchi, V.M. Norris, Design and Development of Medical Electronic Instrumentation: A Practical Perspective of the Design, Construction, and Test of Medical Devices (Wiley, Hoboken, 2005). doi: 10.1002/0471681849

  47. N. Li, J. Guo, H.S. Nie, W. Yi, H.J. Liu, H. Xu, Appl. Mech. Mater. 136, 396 (2011)

    Article  Google Scholar 

  48. K.H. Lin, W.H. Chiu, J.D. Tseng, Comput. Math. Appl. 64(5), 1400 (2012)

    Article  Google Scholar 

  49. J. Guo, P. Dong, Lect. Electr. Eng. 139, 7 (2012)

    Google Scholar 

Download references

Acknowledgments

The National Science Council of Taiwan, under Grants NSC100-2628-E-239-002-MY2 and NSC100-2410-H-216-003 supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Shen Juang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Juang, YS., Sung, TY., Hsin, HC. (2014). VLSI Implementation of Low-Power and High-SFDR Digital Frequency Synthesizer for Underwater Instruments and Network Systems. In: Chang, SH., Parinov, I., Topolov, V. (eds) Advanced Materials. Springer Proceedings in Physics, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-319-03749-3_23

Download citation

Publish with us

Policies and ethics