Skip to main content

Determination of Elastic and Dissipative Properties of Material Using Combination of FEM and Complex Artificial Neural Networks

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 152))

Abstract

This paper describes the application of complex artificial neural networks (CANN) in the inverse identification problem of the elastic and dissipative properties of solids. Additional information for the inverse problem serves the components of the displacement vector measured on the body boundary, which performs harmonic oscillations at the first resonant frequency. The process of displacement measurement in this paper is simulated using calculation of finite element (FE) software ANSYS. In the shown numerical example, we focus on the accurate identification of elastic modulus and quality of material depending on the number of measurement points and their locations as well as on the architecture of neural network and time of the training process, which is conducted by using algorithms RProp, QuickProp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Simon, Neural Network a Comprehensive Foundation, 2nd edn. (Prentice Hall, New Jersy, 1998)

    Google Scholar 

  2. A.A. Krasnoschekov, B.V. Sobol, A.N. Soloviev, A.V. Cherpakov, Russ. J. Nondestruct. Test. 6, 67 (2011)

    Google Scholar 

  3. S.W. Liu, J.H. Huang, J.C. Sung, C.C. Lee, Comput. Methods Appl. Mech. Eng. 191(4), 2831 (2002)

    Article  Google Scholar 

  4. Hasan Temurtas, Feyzullah Temurtas, Expert Syst. Appl. 38(4), 3446 (2011)

    Article  Google Scholar 

  5. V. Khandetsky, I. Antonyuk, NDT&E Int. 35, 483 (2002)

    Article  Google Scholar 

  6. Y.G. Xu, G.R. Liu, Z.P. Wu, X.M. Huang, Int. J. Solids Struct. 38(8), 5625 (2001)

    Article  Google Scholar 

  7. P. Korczak, H. Dyja, E. Łabuda, J. Mater. Process. Technol. 80–81(8), 481 (1998)

    Article  Google Scholar 

  8. T. Mira, S. Zoran, L. Uros, Polymer 48(8), 5340 (2007)

    Google Scholar 

  9. J. Ghaisari, H. Jannesari, M. Vatani, Adv. Eng. Softw. 45(3), 91 (2012)

    Article  Google Scholar 

  10. P. Iztok, T. Milan, K. Goran, Expert Syst. Appl. 39(4), 5634 (2012)

    Google Scholar 

  11. Y. Sun, W. Zeng, Y. Han, X. Ma, Y. Zhao, P. Guo, G. Wang, Comput. Mater. Sci. 60(7), 239 (2012)

    Google Scholar 

  12. T. Nitta, in Proceedingsof the International Joint Conference on Neural Networks, IEEE, p. 1649. Nagoya, 1993

    Google Scholar 

  13. T. Nitta, Neural Network 10, 1391 (1997)

    Article  Google Scholar 

  14. A. Hirose (ed.), Complex-Valued Neural Networks: Theories and Applications. The Series on Innovative Intelligence. (World Scientific, Singapore 2003)

    Google Scholar 

  15. C. Li, X. Liao, J. Yu, J. Comput. Syst. Sci. 67, 623 (2003)

    Article  Google Scholar 

  16. T. Nitta, Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters (Information Science Reference, New York, 2009)

    Book  Google Scholar 

  17. A.V. Belokon, A.V. Nasedkin, A.N. Soloviev, Appl. Math. Mech. 66(3), 491 (2005)

    Google Scholar 

  18. W. Nowacki, Theory of Elasticity (MIR Publishers, Moscow, 1976). (in Russian)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Framework Program (FP-7) “INNOPIPES” (Marie Curie Actions, People), grant # 318874, and Russian Foundation for Basic Research (grants # 13-01-00196_a, # 13-01-00943_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Soloviev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Soloviev, A.N., Giang, N.D.T., Chang, SH. (2014). Determination of Elastic and Dissipative Properties of Material Using Combination of FEM and Complex Artificial Neural Networks. In: Chang, SH., Parinov, I., Topolov, V. (eds) Advanced Materials. Springer Proceedings in Physics, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-319-03749-3_12

Download citation

Publish with us

Policies and ethics