Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

  • 2151 Accesses

Abstract

Development of multiorgan dysfunction is often the result of hypoperfusion, which severely affects outcomes of medical and surgical patients and substantially increases the utilization of resources and costs [1]. Therefore, the use of early and efficient strategies to detect tissue hypoperfusion and to treat the imbalance between oxygen consumption and delivery is of particular importance [2]. Traditional endpoints, such as heart rate, blood pressure, mental status and urine output, can be useful in the initial identification of inadequate perfusion, but are limited in their ability to identify ongoing, compensated shock [3]. Therefore, more detailed assessment of global macrohemodynamic indices, such as cardiac output and derived variables and measures of oxygen delivery and uptake, may be necessary to guide treatment [4–5]. Furthermore, after optimization of these parameters, indicators of tissue perfusion should also be assessed to verify the effectiveness of therapy [6]. This multimodal approach can be translated into the individualized use of target endpoints for hemodynamic stabilization instead of treating ‘normal’ values, and can help to achieve adequate oxygen supply and tissue oxygenation in order to avoid under- or over-resuscitation, which are equally harmful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoemaker WC, Appel PL, Kram HB (1992) Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest 102:208–215

    Article  CAS  PubMed  Google Scholar 

  2. Shoemaker WC, Appel PL, Kram HB (1988) Tissue oxygen debt as determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 16:1117–1120

    Article  CAS  PubMed  Google Scholar 

  3. (2006) Endpoints of resuscitation: what should we be monitoring? AACN Adv. Crit Care 17(3):306–316

    Google Scholar 

  4. Donati A, Pelaia P, Pietropaoli P et al (2011) Do use ScvO2 and O2ER as therapeutical goals. Minerva Anestesiol 77:483–484

    CAS  PubMed  Google Scholar 

  5. Marik PE, Desai H (2012) Goal directed fluid therapy. Curr Pharm Des 18:6215–6224

    Article  CAS  PubMed  Google Scholar 

  6. Benes J, Pradl R, Chyrta I (2012) Perioperative hemodynamic optimization: A way to individual goals. In: Vincent JL (ed) Annual Update in Intensive Care and Emergency Medicine 2012. Springer, New York, pp 357–367

    Chapter  Google Scholar 

  7. Vallet B, Tavernier B, Lund N (2000) Assessment of tissue oxygenation in the critically ill. Eur J Anaesthesiol 17:221–229

    Article  CAS  PubMed  Google Scholar 

  8. Perner A (2009) Diagnosing Hypovolemia in the critically ill. Crit Care Med 37:2674–2675

    Article  PubMed  Google Scholar 

  9. Sakr Y, Dubois MJ, De Backer D et al (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  10. Vincent JL (1990) The relationship between oxygen demand, oxygen uptake, and oxygen supply. Intensive Care Med 16(2):145–148

    Article  Google Scholar 

  11. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  12. Osman D, Ridel C, Ray P et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  13. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  14. Gurgel ST, do Nascimento P Jr. (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391

    Article  PubMed  Google Scholar 

  15. Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15:214

    Article  PubMed  Google Scholar 

  16. Donati A, Nardella R, Gabbanelli V et al (2008) The ability of PiCCO versus LiDCO variables to detect changes in cardiac index: a prospective clinical study. Minerva Anestesiol 74:367–374

    CAS  PubMed  Google Scholar 

  17. Benes J, Chytra I, Altmann P et al (2010) Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 14:R118

    Article  PubMed  Google Scholar 

  18. Cecconi M, Fasano N, Langiano N et al (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15:R132

    Article  PubMed  Google Scholar 

  19. Nemeth M, Demeter G, Kaszaki J et al (2012) Venous-arterial CO2gap (DCO2) can be complementary of central venous oxygen saturation (ScvO2) as target end points during fluid resuscitation. Intensive Care Med 38:S0030

    Google Scholar 

  20. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  CAS  PubMed  Google Scholar 

  21. Marik PE, Cavallazzi R, Vasu T et al (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  22. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  23. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  24. Monnet X, Osman D, Ridel C et al (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956

    Article  PubMed  Google Scholar 

  25. Weil MH, Rackow EC, Trevino R et al (1986) Arterionvenous carbon dioxide and pH gradients during cardiac arrest. Circulation 74:1071–1074

    Article  PubMed  Google Scholar 

  26. Cuschieri J, Rivers EP, Donnino MW et al (2005) Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 31:818–822

    Article  PubMed  Google Scholar 

  27. Benjamin E, Paluch TA, Berger SR et al (1987) Venous hypercarbia in canine hemorrhagic shock. Crit Care Med 15:516–518

    Article  CAS  PubMed  Google Scholar 

  28. Weil MH (1986) Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 315:1616–1618

    Article  Google Scholar 

  29. Vallet B, Teboul JL, Cain S et al (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    CAS  PubMed  Google Scholar 

  30. Lamia B, Monnet X, Teboul JL (2006) Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol 72:597–604

    CAS  PubMed  Google Scholar 

  31. Mecher CE, Rackow EC, Astiz ME et al (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18:585–589

    Article  CAS  PubMed  Google Scholar 

  32. Adrogué HJ, Rashad MN, Gorin AB et al (1989) Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 320:1312–1316

    Article  PubMed  Google Scholar 

  33. Kocsi Sz, Demeter G, Erces D, et al (2013) Central venous-to-arterial CO2 gap is a useful parameter in monitoring hypovolemia-caused altered oxygen balance: animal study. Crit Care Res Pract Article ID 583598

    Google Scholar 

  34. Vallée F, Vallet B, Mathe O et al (2006) Central Venous-to-arterial Carbon Dioxide Difference: an Additional Target for Goal-directed Therapy in Septic Shock? Intensive Care Med 34:2218–2225

    Article  Google Scholar 

  35. Futier E, Robin E, Jabaudon M et al (2010) Central venous O2 saturation and Venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care 14:R193

    Article  PubMed  Google Scholar 

  36. Vallet B, Lebuffe G (2007) How to titrate vasopressors against fluid loading in septic shock. Adv Sepsis 6:34–40

    CAS  Google Scholar 

  37. Chawla LS, Zia H, Gutierrez G et al (2004) Lack of equivalence between central and mixed venous oxygen saturation. Chest 126:1891–1896

    Article  PubMed  Google Scholar 

  38. Reinhart K, Kuhn HJ, Hartog C et al (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578

    Article  PubMed  Google Scholar 

  39. Varpula M, Karlsson S, Ruokonen E et al (2006) Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 32:1336–1343

    Article  PubMed  Google Scholar 

  40. van Beest PA, van Ingen J, Boerma EC et al (2010) No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care 14:R219

    Article  PubMed  Google Scholar 

  41. Rivers E (2006) Mixed versus central venous oxygen saturation may be not numerically equal, but both are still clinically useful. Chest 129:507–508

    Article  PubMed  Google Scholar 

  42. van Beest PA, Wietasch G, Scheeren T (2011) Clinical review: use of venous oxygen saturations as a goal– a yet unfinished puzzle. Crit Care 15:232

    Article  PubMed  Google Scholar 

  43. Pope JV, Jones AE, Gaieski DF et al (2010) EMShockNet. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann Emerg Med 55:40–46

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  CAS  PubMed  Google Scholar 

  45. Meregalli A, Oliveira RP, Friedman G (2004) Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 8:R60–R65

    Article  PubMed  Google Scholar 

  46. Nguyen HB, Rivers EP, Knoblich BP et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642

    Article  PubMed  Google Scholar 

  47. Gómez H, Torres A, Polanco P et al (2008) Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response. Intensive Care Med 34:1600–1607

    Article  PubMed  Google Scholar 

  48. De Backer D, Ospina-Tascon G, Salgado D et al (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36:1813–1825

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Molnár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tánczos, K., Németh, M., Molnár, Z. (2014). The Hemodynamic Puzzle: Solving the Impossible?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics