Skip to main content

The Importance of Weaning for Successful Treatment of Respiratory Failure

  • Chapter
Book cover Annual Update in Intensive Care and Emergency Medicine 2014

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

  • 2133 Accesses

Abstract

Identification of acute respiratory failure and treatment of the underlying cause(s) are crucial but also difficult challenges in ICU management. Weaning from mechanical ventilation must be conducted in a timely manner because invasive, prolonged mechanical ventilation can be a significant hazard with a negative influence on the weaning process. Interestingly, the process of weaning from mechanical ventilation represents approximately 40–50 % of the duration of mechanical ventilation [1–3] and is directly associated with patient prognosis [4].

Our knowledge of the pathophysiological aspects of mechanical ventilation have increased in recent years. Here we review recent aspects of ventilator-induced complications, their impact on weaning from mechanical ventilation and the role of weaning protocols as well as the potential role of specialized weaning units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteban A, Anzueto A, Frutos F et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355

    Article  PubMed  Google Scholar 

  2. Goligher E, Ferguson ND (2009) Mechanical ventilation: epidemiological insights into current practices. Curr Opin Crit Care 15:44–51

    Article  PubMed  Google Scholar 

  3. Marelich GP, Murin S, Battistella F, Inciardi J, Vierra T, Roby M (2000) Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses: effect on weaning time and incidence of ventilator-associated pneumonia. Chest 118:459–467

    Article  CAS  PubMed  Google Scholar 

  4. Boles JM, Bion J, Connors A et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056

    Article  PubMed  Google Scholar 

  5. Steinberg J, Schiller HJ, Halter JM et al (2002) Tidal volume increases do not affect alveolar mechanics in normal lung but cause alveolar overdistension and exacerbate alveolar instability after surfactant deactivation. Crit Care Med 30:2675–2683

    Article  PubMed  Google Scholar 

  6. Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 78:346–355

    Article  Google Scholar 

  7. Gattinoni L, Carlesso E, Caironi P (2012) Stress and strain within the lung. Curr Opin Crit Care 18:42–47

    Article  PubMed  Google Scholar 

  8. Halbertsma FJ, Vaneker M, Scheffer GJ, van der Hoeven JG (2005) Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth J Med 63:382–392

    CAS  PubMed  Google Scholar 

  9. Pulletz S, Kott M, Elke G, Schädler D, Vogt B, Weiler N, Frerichs I (2012) Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome. Multidiscip Respir Med 7:44

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zick G, Elke G, Becher T et al (2013) Effect of PEEP and Tidal Volume on Ventilation Distribution and End-Expiratory Lung Volume: A Prospective Experimental Animal and Pilot Clinical Study. PLoS One 8:e72675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Halter J, Steinberg JM, Schiller HJ et al (2003) Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 167:1620–1626

    Article  PubMed  Google Scholar 

  12. Schiller HJ, McCann UG, Carney DE, Gatto LA, Steinberg JM, Nieman GF (2001) Altered alveolar mechanics in the acutely injured lung. Crit Care Med 29:1049–1055

    Article  CAS  PubMed  Google Scholar 

  13. Schiller HJ, Steinberg J, Halter J et al (2003) Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit Care Med 31:1126–1133

    Article  PubMed  Google Scholar 

  14. Bickenbach J, Czaplik M, Dembinski R et al (2010) vivo microscopy in a porcine model of acute lung injury. Respir Physiol Neurobiol 172:192–200

    Article  PubMed  Google Scholar 

  15. Czaplik M, Rossaint R, Koch E et al (2011) Methods for quantitative evaluation of alveolar structure during in vivo microscopy. Respir Physiol Neurobiol 176:123–129

    Article  CAS  PubMed  Google Scholar 

  16. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  17. Bein T, Weber-Carstens S, Goldmann A et al (2013) Lower tidal volume strategy (≈ 3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39:847–856

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ramirez P, Bassi GL, Torres A (2012) Measures to prevent nosocomial infections during mechanical ventilation. Curr Opin Crit Care 18:86–92

    Article  PubMed  Google Scholar 

  19. Bickenbach J, Marx G (2013) Diagnosis of pneumonia in mechanically ventilated patients: What is the meaning of the CPIS? Minerva Anestesiol (in press)

    Google Scholar 

  20. Hunter JD (2006) Ventilator associated pneumonia. Postgrad Med J 82:172–178

    Article  CAS  PubMed  Google Scholar 

  21. Mietto C, Pinciroli R, Patel N, Berra L (2013) Ventilator associated pneumonia: evolving definitions and preventive strategies. Respir Care 58:990–1007

    Article  PubMed  Google Scholar 

  22. Ricard J, Conti G, Boucherie M et al (2012) A European survey of nosocomial infection control and hospital-acquired pneumonia prevention strategies. J Infect 65:285–291

    Article  PubMed  Google Scholar 

  23. Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction-human studies confirm animal model findings! Crit Care 15:206

    Article  PubMed  Google Scholar 

  24. Powers SK, Hudson MB, Nelson WB et al (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759

    Article  CAS  PubMed  Google Scholar 

  25. Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK (2010) Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol 108:1376–1382

    Article  CAS  PubMed  Google Scholar 

  26. Powers SK, Shanely RA, Coombes JS et al (2002) Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol 92:1851–1858

    PubMed  Google Scholar 

  27. Powers SK, Hudson MB, Nelson WB et al (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759

    Article  CAS  PubMed  Google Scholar 

  28. Picard M, Jung B, Liang F et al (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140–1149

    Article  CAS  PubMed  Google Scholar 

  29. Lecuona E, Sassoon CS, Barreiro E (2012) Lipid overload: trigger or consequence of mitochondrial oxidative stress in ventilator-induced diaphragmatic dysfunction? Am J Respir Crit Care Med 186:1074–1076

    Article  PubMed  Google Scholar 

  30. Davis RT 3rd, Bruells CS, Stabley JN, McCullough DJ, Powers SK, Behnke BJ (2012) Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake. Crit Care Med 40:2858–2866

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bruells CS, Maes K, Rossaint R et al (2013) Prolonged Mechanical Ventilation Alters the Expression Pattern of Angio-neogenetic Factors in a Pre-Clinical Rat Model. PloS one 8:e70524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Thomas D, Maes K, Agten A et al (2013) Time course of diaphragm function recovery after controlled mechanical ventilation in rats. J Appl Physiol 115:775–784

    Article  CAS  PubMed  Google Scholar 

  33. Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37:354–367

    Article  Google Scholar 

  34. Jung B, Sebbane M, Le Goff C et al (2013) Moderate and prolonged hypercapnic acidosis may protect against ventilator-induced diaphragmatic dysfunction in healthy piglet: an in vivo study. Crit Care 17:R15

    Article  PubMed  Google Scholar 

  35. Jaber S, Jung B, Sebbane M et al (2008) Alteration of the piglet diaphragm contractility in vivo and its recovery after acute hypercapnia. Anesthesiology 108:651–658

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bruells CS, Smuder AJ, Reiss LK et al (2013) Negative pressure ventilation and positive pressure ventilation promote comparable levels of ventilator-induced diaphragmatic dysfunction in rats. Anesthesiology 119:652–662

    Article  PubMed  Google Scholar 

  37. Judemann K, Lunz D, Zausig YA, Graf BM, Zink W (2011) Intensive care unit-acquired weakness in the critically ill: critical illness polyneuropathy and critical illness myopathy. Anaesthesist 60:887–901

    Article  CAS  PubMed  Google Scholar 

  38. Lellouche F, Mancebo J, Jolliet P et al (2006) A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 174:894–900

    Article  PubMed  Google Scholar 

  39. Goldstone J (2002) The pulmonary physician in critical care. 10: difficult weaning. Thorax 57:986–991

    Article  CAS  PubMed  Google Scholar 

  40. Gupta P, Giehler K, Walters RW, Meyerink K, Modrykamien AM (2013) the effect of a mechanical ventilation discontinuation protocol in patients with simple and difficult weaning: impact on clinical outcomes. Respir Care (in press)

    Google Scholar 

  41. Esteban A, Alia I, Tobin MJ et al (1999) Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 159:512–518

    Article  CAS  PubMed  Google Scholar 

  42. Brochard L, Rua F, Lorino H, Lemaire F, Harf A (1991) Inspiratory pressure support compensates for the additional work of breathing caused by the endotracheal tube. Anesthesiology 75:739–745

    Article  CAS  PubMed  Google Scholar 

  43. Ezingeard E, Diconne E, Guyomarc'h S et al (2006) Weaning from mechanical ventilation with pressure support in patients failing a T-tube trial of spontaneous breathing. Intens Care Med 32:165–169

    Article  Google Scholar 

  44. Grasso S, Puntillo F, Mascia L et al (2000) Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med 161:819–826

    Article  CAS  PubMed  Google Scholar 

  45. Rozé H, Repusseau B, Perrier V, et al (2013) Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist. Br J Anaesth (in press)

    Google Scholar 

  46. Arnal JM, Wysocki M, Novotni D et al (2012) Safety and efficacy of a fully closed-loop control ventilation (IntelliVent-ASV®) in sedated ICU patients with acute respiratory failure: a prospective randomized crossover study. Intensive Care Med 38:781–787

    Article  PubMed  Google Scholar 

  47. Coplin WM, Pierson DJ, Cooley KD et al (2000) Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med 161:1530–1536

    Article  CAS  PubMed  Google Scholar 

  48. Funk GC, Anders S, Breyer MK et al (2010) Incidence and outcome of weaning from mechanical ventilation according to new categories. Eur Respir J 35:88–94

    Article  PubMed  Google Scholar 

  49. Peñuelas O, Frutos-Vivar F, Fernández C et al (2011) Characteristics and outcomes of ventilated patients according to time to liberation from mechanical ventilation. Am J Respir Crit Care Med 184:430–437

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bickenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bickenbach, J., Brülls, C., Marx, G. (2014). The Importance of Weaning for Successful Treatment of Respiratory Failure. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics