Skip to main content

MicroRNAs and Energy Metabolism in Cancer Cells

  • Chapter
  • First Online:
Book cover MicroRNAs: Key Regulators of Oncogenesis

Abstract

In 1927, Otto Warburg demonstrated that cancer cells use glucose for growth and division in a manner that is different from normal cells, a phenomenon known nowadays as Warburg Effect. To date, overwhelming evidence indicates that aberration in metabolism plays important roles in cancer progression. More recently, for more than a decade biologists are fascinated by the functions of small RNAs known as microRNAs (miRNAs), which play vital roles in many important biological processes, such as cell proliferation, differentiation, EMT/MET transition, cell signaling, response to infection, induction of pluripotent stem cells and cell metabolism. As discussed in other excellent chapters of this book, the roles of miRNAs in cancer development have been extensively studied. Here in this chapter, we will discuss the significance of miRNAs in regulating cancer cell metabolism. Specifically, we will focus on the roles of miRNAs in mediating metabolism of three major energy substrates including glucose, lipid and glutamine metabolism in cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W et al (2011) Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 71(9):3400–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannell IG, Kong YW, Bushell M (2008) How do microRNAs regulate gene expression? Biochem Soc Trans 36(6):1224

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X et al (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Currie E, Schulze A, Zechner R, Walther TC, Farese RV (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (2010) Glutaminolysis: supplying carbon or nitrogen, or both for cancer cells? Cell Cycle 9(19):3884–3886

    Article  CAS  PubMed  Google Scholar 

  • Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108(22):9232–9237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F et al (2012) Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31(16):2062–2074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Druz A, Betenbaugh M, Shiloach J (2012) Glucose depletion activates mmu-miR-466h-5p expression through oxidative stress and inhibition of histone deacetylation. Nucleic Acids Res 40(15):7291–7302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic cells. Diabetes 57(10):2708–2717

    Article  PubMed  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Fabani MM, Gait MJ (2007) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14(2):336–346

    Article  PubMed  Google Scholar 

  • Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y et al (2012) MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 287(27):23227–23235

    Article  CAS  PubMed  Google Scholar 

  • Fei X, Qi M, Wu B, Song Y, Wang Y, Li T (2012) MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett 586(4):392–397

    Article  CAS  PubMed  Google Scholar 

  • Frost RJA, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci 108(52):21075–21080

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara T, Kambara H, Shiokawa M, Ono C, Katoh H, Morita E et al (2012) Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J Virol 86(15):7918–7933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F et al (2009) Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23(11):1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Gauthier BR, Wollheim CB (2006) MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med 12(1):36–38

    Article  CAS  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37(5):620–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han C, Gu H, Wang J, Lu W, Mei Y, Wu M (2013) Regulation of L-threonine dehydrogenase in somatic cell reprogramming. Stem Cells 31(5):953–965

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M et al (2009) MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 389(2):315–320

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K et al (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci 107(40):17321–17326

    Article  CAS  PubMed  Google Scholar 

  • Hsu S-h, Wang B, Kota J, Yu J, Costinean S, Kutay H et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122(8):2871–2883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107(16):7455–7460

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Xu Y, Hao J, Wang S, Li C, Meng S (2012) MiR-122 in hepatic function and liver diseases. Protein Cell 3(5):364–371

    Article  CAS  PubMed  Google Scholar 

  • Jeon T-I, Esquejo RM, Roqueta-Rivera M, Phelan PE, Moon Y-A, Govindarajan SS et al (2013) An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab 18(1):51–61

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhang L-F, Zhang H-W, Hu S, Lu M-H, Liang S et al (2012) A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31(8):1985–1998

    Article  CAS  PubMed  Google Scholar 

  • Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS et al (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13(4):434–446

    Article  CAS  PubMed  Google Scholar 

  • Kida K, Nakajima M, Mohri T, Oda Y, Takagi S, Fukami T et al (2011) PPARα is regulated by miR-21 and miR-27b in human liver. Pharm Res 28(10):2467–2476

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, You YH, Jung S, Suh-Kim H, Lee IK, Cho JH et al (2013) miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 56(4):847–855

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109(23):8983–8988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Long J, Wang Y, Wang W, Chang BH, Danesh FR (2011) MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 286(13):11837–11848

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420

    Article  CAS  PubMed  Google Scholar 

  • Mann J, Chu DCK, Maxwell A, Oakley F, Zhu NL, Tsukamoto H et al (2010) MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138(2):705–714.e704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marquart TJ, Allen RM, Ory DS, Baldan A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 107(27):12228–12232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE et al (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569

    Article  CAS  PubMed  Google Scholar 

  • Peyrou M, Ramadori P, Bourgoin L, Foti M (2012) PPARs in liver diseases and cancer: epigenetic regulation by microRNAs. PPAR Res 2012:1–16

    Article  Google Scholar 

  • Qiu L, Fan H, Jin W, Zhao B, Wang Y, Ju Y et al (2010) miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV. Biochem Biophys Res Commun 398(4):771–777

    Article  CAS  PubMed  Google Scholar 

  • Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S et al (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121(7):2921–2931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of drosophila microRNA targets. PLoS Biol 1(3):e60

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci 107(16):7461–7466

    Article  CAS  PubMed  Google Scholar 

  • Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R et al (2012) MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 122(8):2884–2897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Tang H, Thayanithy V, Subramanian S, Oberg AL, Cunningham JM et al (2009) Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res 69(24):9490–9497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Friedman JR (2012) miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest 122(8):2773–2776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang YM, Seo SY, Kim TH, Kim SG (2012) Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology 56(6):2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng L, Lv G-c, Sheng J, Yang Y-d (2010) Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-α expression, a novel mechanism for the pathogenesis of NAFLD. J Gastroenterol Hepatol 25(1):156–163

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR et al (2010) Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 42(7):626–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS et al (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147(1):81–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu G, Chai J, Ma L, Duan H, Zhang H (2013) Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 433(4):526–531

    Article  CAS  PubMed  Google Scholar 

  • Zissel G, Papi A, Storci G, Guarnieri T, De Carolis S, Bertoni S et al (2013) Peroxisome proliferator activated receptor-α/hypoxia inducible factor-1α interplay sustains carbonic anhydrase IX and apoliprotein E expression in breast cancer stem cells. PLoS One 8(1):e54968

    Article  Google Scholar 

Download references

Acknowledgments

Our work is supported in part by National Basic Key Research Program of China (2014CB910600, 2011CBA01103 and 2012CB910104), National Nature Science Foundation of China (31171385 and 31071257). H.Z is supported by Chinese Government “1000 Youth Talent Program”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Gao or Huafeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, L., He, X., Cao, Y., Gao, P., Zhang, H. (2014). MicroRNAs and Energy Metabolism in Cancer Cells. In: Babashah, S. (eds) MicroRNAs: Key Regulators of Oncogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-03725-7_4

Download citation

Publish with us

Policies and ethics