Skip to main content

Epigenetics, MicroRNAs and Human Cancer

  • Chapter
  • First Online:
MicroRNAs: Key Regulators of Oncogenesis

Abstract

Classical genetics alone cannot explain how cancer occurs pretty well, and the proposal of concept of epigenetics provides a partial explanation about the cause of cancers. DNA methylation and histone modifications are the best-known epigenetic marks. MicroRNAs (miRNAs), a class of endogenous, single-stranded, non-coding small RNA with 18–22 nucleotides in length, play a critical role in initiation, progression, metastasis and invasion of cancers. It is widely recognized that deregulation of miRNAs is a hallmark of cancer. The expression of miRNAs can be regulated by several mechanisms, including epigenetic changes. Furthermore, it has been discovered that a subgroup of miRNAs, which are known as epi-miRNAs, can regulate the expression of effectors of the epigenetic mechanisms by directly or indirectly targeting these epigenetic-modifying enzymes and molecules. This chapter will focus on how epigenetic changes regulate the miRNAs expression as well as how epi-miRNAs affect the epigenome, and how to translate these findings into clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    CAS  PubMed  Google Scholar 

  • Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453

    CAS  PubMed  Google Scholar 

  • Agirre X, Martinez-Climent JA, Odero MD, Prosper F (2012) Epigenetic regulation of miRNA genes in acute leukemia. Leukemia 26(3):395–403

    CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M et al (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124(10):2367–2374

    CAS  PubMed  Google Scholar 

  • Anwar SL, Albat C, Krech T, Hasemeier B, Schipper E, Schweitzer N et al (2013) Concordant hypermethylation of intergenic microRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker. Int J Cancer 133(3):660–670

    CAS  PubMed  Google Scholar 

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    CAS  PubMed  Google Scholar 

  • Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M (2012) Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr) 35(5):317–334

    CAS  Google Scholar 

  • Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR et al (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70(16):6609–6618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125(11):2737–2743

    CAS  PubMed  Google Scholar 

  • Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31(24):4858–4873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(3):268–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    CAS  PubMed  Google Scholar 

  • Bogdanovic O, Veenstra GJ (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118(5):549–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    CAS  PubMed  Google Scholar 

  • Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C et al (2011) miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 10:29

    PubMed Central  PubMed  Google Scholar 

  • Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51(3):881–890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandl A, Heinzel T, Kramer OH (2009) Histone deacetylases: salesmen and customers in the post-translational modification market. Biol Cell 101(4):193–205

    CAS  PubMed  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423

    CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al (2004a) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004b) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campanero MR, Armstrong MI, Flemington EK (2000) CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 97(12):6481–6486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H et al (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348

    CAS  PubMed  Google Scholar 

  • Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M et al (2010) Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8(9):1207–1216

    CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Chen X, Zhang M, Fan Q, Luo S, Cao X (2011) miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci 56(7):2009–2016

    CAS  PubMed  Google Scholar 

  • Chen X, Hu H, Guan X, Xiong G, Wang Y, Wang K et al (2012) CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer 130(7):1607–1613

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang L, Zhang T, Hao M, Zhang X, Zhang J et al (2013) Methylation-mediated repression of microRNA 129–2 enhances oncogenic SOX4 expression in HCC. Liver Int 33(3):476–486

    CAS  PubMed  Google Scholar 

  • Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY et al (2011) Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 15(12):2760–2767

    CAS  PubMed  Google Scholar 

  • Craig VJ, Cogliatti SB, Rehrauer H, Wundisch T, Muller A (2011) Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives Helicobacter-associated gastric lymphomagenesis. Cancer Res 71(10):3616–3624

    CAS  PubMed  Google Scholar 

  • Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F et al (2012) Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31(16):2062–2074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008) Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7(17):2643–2646

    CAS  PubMed  Google Scholar 

  • Diederichs S, Haber DA (2006) Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res 66(12):6097–6104

    CAS  PubMed  Google Scholar 

  • Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K et al (2013) Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 42(2):411–418

    CAS  PubMed  Google Scholar 

  • Dunn BK (2003) Hypomethylation: one side of a larger picture. Ann N Y Acad Sci 983:28–42

    CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14(5):872–877

    CAS  PubMed  Google Scholar 

  • Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q (2011) miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 286(29):25992–26002

    CAS  PubMed  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455

    CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    CAS  PubMed  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    CAS  PubMed  Google Scholar 

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629

    CAS  PubMed  Google Scholar 

  • Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31(5):766–776

    CAS  PubMed  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25):6411–6418

    CAS  PubMed  Google Scholar 

  • Gebauer K, Peters I, Dubrowinskaja N, Hennenlotter J, Abbas M, Scherer R et al (2013) Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer 108(1):131–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    CAS  PubMed  Google Scholar 

  • Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280(14):13341–13348

    CAS  PubMed  Google Scholar 

  • Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888

    CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y (2010) Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 31(5):777–784

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Nakayama J (2011) Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011:129383

    PubMed Central  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007a) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    CAS  PubMed  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ (2007b) microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819–822

    CAS  PubMed  Google Scholar 

  • He Y, Cui Y, Wang W, Gu J, Guo S, Ma K et al (2011) Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 13(9):841–853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    CAS  PubMed  Google Scholar 

  • Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P et al (2010) Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 29(42):5724–5728

    CAS  PubMed  Google Scholar 

  • Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26(37):5528–5540

    CAS  PubMed  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268(1):305–314

    CAS  PubMed  Google Scholar 

  • Hossain MB, Vahter M, Concha G, Broberg K (2012) Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype. Metallomics 4(11):1167–1175

    CAS  PubMed  Google Scholar 

  • Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ et al (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69(23):9038–9046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iorio MV, Croce CM (2012) Causes and consequences of microRNA dysregulation. Cancer J 18(3):215–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707

    CAS  PubMed  Google Scholar 

  • Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799(10–12):694–701

    CAS  PubMed  Google Scholar 

  • Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR et al (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128(6):1077–1088

    CAS  PubMed  Google Scholar 

  • Ji W, Yang L, Yuan J, Yang L, Zhang M, Qi D et al (2013) MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 34(2):446–453

    CAS  PubMed  Google Scholar 

  • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL (2000) The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14(10):1196–1208

    CAS  PubMed  Google Scholar 

  • Ke XS, Qu Y, Rostad K, Li WC, Lin B, Halvorsen OJ et al (2009) Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One 4(3):e4687

    PubMed Central  PubMed  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140(1):111–122

    CAS  PubMed  Google Scholar 

  • Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1(2):157–162

    CAS  PubMed  Google Scholar 

  • Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729

    CAS  PubMed  Google Scholar 

  • Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y et al (2012) MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 61(1):33–42

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677

    CAS  PubMed  Google Scholar 

  • Kwon OH, Park JL, Kim M, Kim JH, Lee HC, Kim HJ et al (2011) Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem Biophys Res Commun 406(4):539–545

    CAS  PubMed  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E et al (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35(5):610–625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  PubMed  Google Scholar 

  • Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH et al (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19(7):1175–1183

    CAS  PubMed  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24

    CAS  PubMed  Google Scholar 

  • Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71(5):865–873

    CAS  PubMed  Google Scholar 

  • Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M et al (2010a) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70(13):5226–5237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Liu J, Zhou R, Huang S, Huang S, Chen XM (2010b) Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol 148(1):69–79

    CAS  PubMed  Google Scholar 

  • Li X, Lin R, Li J (2011) Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig Dis Sci 56(10):2849–2856

    CAS  PubMed  Google Scholar 

  • Li Q, Zou C, Zou C, Huang H, Jin J, Han Z et al (2013) MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett 335(1):168–174

    CAS  PubMed  Google Scholar 

  • Lim Y, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E et al (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem cell-like state. J Cell Sci 126(Pt 10):2256–2266

    CAS  PubMed  Google Scholar 

  • Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466(7305):508–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122

    CAS  PubMed  Google Scholar 

  • Lu F, Stedman W, Yousef M, Renne R, Lieberman PM (2010) Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol 84(6):2697–2706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429

    CAS  PubMed  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magnani R, Dirk LM, Trievel RC, Houtz RL (2010) Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nat Commun 1:43

    PubMed  Google Scholar 

  • Mazar J, DeBlasio D, Govindarajan SS, Zhang S, Perera RJ (2011) Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett 585(15):2467–2476

    CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    CAS  PubMed  Google Scholar 

  • Mortusewicz O, Fouquerel E, Ame JC, Leonhardt H, Schreiber V (2011) PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res 39(12):5045–5056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ et al (2009) MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 101(4):699–706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25(13):1345–1358

    CAS  PubMed  Google Scholar 

  • Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724

    CAS  PubMed  Google Scholar 

  • O’Hara SP, Splinter PL, Gajdos GB, Trussoni CE, Fernandez-Zapico ME, Chen XM et al (2010) NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285(1):216–225

    PubMed  Google Scholar 

  • Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713

    CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    CAS  PubMed  Google Scholar 

  • Omura N, Li CP, Li A, Hong SM, Walter K, Jimeno A et al (2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7(7):1146–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551

    CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    CAS  PubMed  Google Scholar 

  • Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A et al (2011) MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 25(3):226–231

    CAS  PubMed  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    CAS  PubMed  Google Scholar 

  • Rodriguez-Otero P, Roman-Gomez J, Vilas-Zornoza A, Jose-Eneriz ES, Martin-Palanco V, Rifon J et al (2011) Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol 155(1):73–83

    CAS  PubMed  Google Scholar 

  • Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339

    CAS  PubMed  Google Scholar 

  • Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27(8):1316–1322

    CAS  PubMed  Google Scholar 

  • Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y (2011) MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer 129(11):2611–2620

    CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    CAS  PubMed  Google Scholar 

  • Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009a) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379(3):726–731

    CAS  PubMed  Google Scholar 

  • Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y et al (2009b) Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 28(30):2738–2744

    CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281

    CAS  PubMed  Google Scholar 

  • Shen R, Pan S, Qi S, Lin X, Cheng S (2010) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 394(4):1047–1052

    CAS  PubMed  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    CAS  PubMed  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267

    CAS  PubMed  Google Scholar 

  • Soto-Reyes E, Gonzalez-Barrios R, Cisneros-Soberanis F, Herrera-Goepfert R, Perez V, Cantu D et al (2012) Disruption of CTCF at the miR-125b1 locus in gynecological cancers. BMC Cancer 12:40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K et al (2010) Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 31(12):2066–2073

    CAS  PubMed  Google Scholar 

  • Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60(6):376–392

    PubMed  Google Scholar 

  • Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Hikiba Y, Obi S et al (2013) MicroRNA-140 acts as a liver tumor suppressor by controlling NF-kappaB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatology 57(1):162–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA et al (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71(8):3087–3097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW et al (2010) Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer 49(11):969–980

    CAS  PubMed  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816

    CAS  PubMed  Google Scholar 

  • Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I et al (2011) miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 71(20):6450–6462

    CAS  PubMed  Google Scholar 

  • Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I et al (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580(17):4214–4217

    CAS  PubMed  Google Scholar 

  • Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659(1–2):40–48

    CAS  PubMed  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322

    PubMed  Google Scholar 

  • Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S et al (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5(1):e8697

    PubMed Central  PubMed  Google Scholar 

  • Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41(1):10–13

    CAS  PubMed  Google Scholar 

  • Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R et al (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32(7):1033–1042

    CAS  PubMed  Google Scholar 

  • Wang J, Zhao H, Tang D, Wu J, Yao G, Zhang Q (2013a) Overexpressions of microRNA-9 and microRNA-200c in human breast cancers are associated with lymph node metastasis. Cancer Biother Radiopharm 28(4):283–288

    CAS  Google Scholar 

  • Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K et al (2013b) Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. doi:10.1038/onc.2012.598. [Epub ahead of print]

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125(3):467–481

    CAS  PubMed  Google Scholar 

  • Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128(6):1327–1334

    CAS  PubMed  Google Scholar 

  • Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA et al (2010) Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 9:167

    PubMed Central  PubMed  Google Scholar 

  • Wilting SM, Verlaat W, Jaspers A, Makazaji NA, Agami R, Meijer CJ et al (2013) Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics 8(2):220–228

    CAS  PubMed  Google Scholar 

  • Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66(13):2109–2121

    CAS  PubMed  Google Scholar 

  • Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G et al (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421(6923):652–656

    CAS  PubMed  Google Scholar 

  • Xu X, Chen Z, Zhao X, Wang J, Ding D, Wang Z et al (2012) MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 421(4):640–645

    CAS  PubMed  Google Scholar 

  • Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105(36):13421–13426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M et al (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23(20):2388–2393

    CAS  PubMed  Google Scholar 

  • Yang S, Li Y, Gao J, Zhang T, Li S, Luo A et al (2012) MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 32(36):4294–4303

    PubMed  Google Scholar 

  • Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N et al (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 105(19):7004–7009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H et al (2011) MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 10:124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu A, Xia J, Zuo J, Jin S, Zhou H, Yao L et al (2012) MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol 29(4):2701–2709

    CAS  PubMed  Google Scholar 

  • Zhu X, Li Y, Shen H, Li H, Long L, Hui L et al (2013) miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett 587(1):73–81

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazeng Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xia, J., Guo, X., Deng, K. (2014). Epigenetics, MicroRNAs and Human Cancer. In: Babashah, S. (eds) MicroRNAs: Key Regulators of Oncogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-03725-7_2

Download citation

Publish with us

Policies and ethics