Skip to main content

Ocean Acidification: Environmental Issue and Its Impact on Marine Life

  • Chapter
  • First Online:
Insights on Environmental Changes

Abstract

Concentration of carbon dioxide is rising with constantly progressing industrialization. The major sources of anthropogenic CO2 are combustion of fossil fuels, transport and industrial processes. This gas is present not only in the atmosphere, but also in water. The oceans play an extremely important role in absorbing CO2 from the atmosphere, and that process leads to a decrease in water pH, which causes changes in the environment and all the organisms present within. Acidification of the oceans is a process in which the pH value of water is reduced by increased partial pressure of CO2 in the water. It is expected to observe a decrease in the pH of the open oceans by 0.35 units over the next hundred years. Reactions of marine organisms to ambient condition changes are specific for particular types or species. Effect of water acidification may affect organisms positively, negatively or may not have an impact at all. Organisms with calcareous shells or frustules are especially vulnerable to ocean acidification. Carbonic acid occurring as a result of the increasing CO2 concentration in water will dissolve the shells built of calcium carbonate. This review focuses on the excessive amount of carbon dioxide in the atmosphere and the impact of this phenomenon on the marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html.

References

  • Algesten G, Wikner J, Sobek S, Tranvik LR, Jansson M (2004) Seasonal variation of CO2 saturation in the Gulf of Bothnia: indications of marine net heterotrophy. Global Biogeochem Cy 18:GB4021

    Google Scholar 

  • Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Venables HJ, Ward P, Kuzirian A, Lézé B, Feely HJ, Murphy EJ (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5:881–885

    Article  Google Scholar 

  • Biswas H, Cros A, Yadav K, Ramana VV, Prasad VR, Acharyya T, Babu PVR (2011) The response of a natural phytoplankton community from the Godavari river estuary to increasing CO2 concentration during the pre-monsoon period. J Exp Mar Biol Ecol 407:284–293

    Article  Google Scholar 

  • Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55(1):346–353

    Article  CAS  Google Scholar 

  • Brutemark N, Engström-Öst J, Vehna A (2011) Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanol Hydrobiol St 40(3):94–99

    Article  Google Scholar 

  • Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:1457

    Article  CAS  Google Scholar 

  • Committee on the Development of an Integrated Science Strategy for Ocean Acidification Monitoring, Research, and Impacts Assessment, OSB, Division on Earth and Life Studies, National Research Council of the National Academies (2013) Ocean acidification, a natural strategy to meet challenges of a changing ocean. The National Academies Press Washington D.C. pp 171–182. http://www.nap.edu/openbook.php?record_id=12904&page=171

  • Czerny J, Ramos JB, Riebesell U (2009) Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6(9):1865–1875

    Article  CAS  Google Scholar 

  • Dzierzbicka-Głowacka L, Kuliński K, Maciejewska A, Jakacki J, Pempkowiak J (2010) Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data. Oceanologia 52:621–648

    Article  Google Scholar 

  • Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5:813–819

    Article  CAS  Google Scholar 

  • Filipkowska A, Lubecki L, Szymczak-Żyła M, Łotocka M, Kowalewska G (2009) Factors affecting the occurrence of algae, on the Sopot beach (Baltic sea). Oceanologia 51(2):233–262

    Article  Google Scholar 

  • Frommel AY, Schubert A, Piatkowski U, Clemmesen C (2013) Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Mar Biol 160:1825–1834

    Article  CAS  Google Scholar 

  • Gao K, Helbling EW, Häder DP, Hutchins DA (2012) Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189

    Article  CAS  Google Scholar 

  • Ghoshal D, Goyal A (2001) Carbon concentration mechanism(s) in unicellular green algae and cyanobacteria. J Plant Biochem Biot 10:83–90

    Article  CAS  Google Scholar 

  • Haglund K, Bjork M, Ramazanov Z, Garcla-Reina G, Pederson M (1992) Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281

    Article  CAS  Google Scholar 

  • Hama T, Kawashima S, Shimotori K, Satoh Y, Omori Y, Wada S, Taiki A, Hasegawa A, Midorikawa T, Ishii M, Saito S, Sasano D, Endo H, Nakayama T, Inouye I (2012) Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production. J Oceanogr 68:183–194

    Article  CAS  Google Scholar 

  • Hopkinson BM, Yan X, Dalin S, Mcginn PJ, Morel FMM (2010) The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnol Oceanogr 55:2011–2024

    Article  CAS  Google Scholar 

  • Hudd R, Kjellman J (2002) Bad matching between hatching and acidification: a pitfall for the burbot, Lota lota, off the river Kyrönjoki. Baltic Sea Fish Res 55:153–160

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomom S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Millers H (eds) Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, 996 pp

    Google Scholar 

  • Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Biol Ecol 434–435:94–101

    Article  Google Scholar 

  • Kleypas J, Yates K (2009) Coral reefs and ocean acidification. Oceanography 22:108–117

    Article  Google Scholar 

  • Kownacka J, Edler L, Gromisz S, Łotocka M, Olenina I, Ostrowska M, Piwosz K (2013) Non-indigenous species Chaetoceros cf lorenzianus Grunow 1863-a new, predominant component of autumn phytoplankton in the southern Baltic Sea. Estuar Coast Shelf Sci 119:101–111

    Article  Google Scholar 

  • Krug SA (2009) Coccolithophores in an acidifying ocean: from single strain to multiple species approaches. Dissertation, University of Kiel, pp 1–147. http://d-nb.info/1019868767/34

  • Kuliński K, Pempkowiak J (2011) The carbon budget of the Baltic sea. Biogeosciences 8:3219–3230

    Article  Google Scholar 

  • Kuliński K, She J, Pempkowiak J (2011) Short and medium term dynamics of the carbon exchange between the Baltic sea and the North sea. Cont Shelf Res 31:1611–1619

    Article  Google Scholar 

  • Kuss J, Roeder W, Wlost KP, DeGrandpre KP (2006) Time-series of surface water CO2 and oxygen measurements on a platform in the central Arkona sea (Baltic sea): seasonality of uptake and release. Mar Chem 101:220–232

    Article  CAS  Google Scholar 

  • Łotocka M (2006) The first observed bloom of the diatom Dactyliosolen fragilissimus (Bergon) Hasle 1996 in the Gulf of Gdańsk. Oceanologia 48(3):447–452

    Google Scholar 

  • Madsen TV, Bowes G (1993) Carbon fixation and content rating mechanism. J Aquat Plant Manage 31:221–222

    Google Scholar 

  • Maina J, de Moel H, Zinke J, Madin J, McClanahan T, Vermaat E (1986) Human deforestation outweighs future climate change impacts of sedimentation on coral reefs. Nat Commun 4:1986

    Google Scholar 

  • Moazami-Goudarzi M, Colman B (2012) Changes in carbon uptake mechanisms in two green marine algae by reduced seawater pH. J Exp Mar Biol Ecol 413:94–99

    Article  CAS  Google Scholar 

  • Moheimani DR (2005) The culture of cocoloiophorid algae for carbon dioxide bioremediation. Dissertation, 1–266 Murdoch University. http://researchrepository.murdoch.edu.au

  • Nimer NA, Brownee C, Merrenett MJ (1994) Carbon dioxide availability, intracellular pH and growth rate of the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 109:257–262

    Article  Google Scholar 

  • O’Malley RT, Behrenfeld MJ, Siegel DA, Maritorena S (2010) Global ocean phytoplankton in: State of the climate in 2009. Bull. Amer. Meteor. Soc 91(7):75–78

    Google Scholar 

  • Omstedt A, Gustafsson E, Wesslander K (2009) Modeling the uptake and release of carbon dioxide in the Baltic sea surface water. Cont Shelf Res 29:870–885

    Article  Google Scholar 

  • Osafune T, Yokota A, Sumida S, Hase E (1990) Immunogold localization of ribulose-1,5-bisphosphate carboxylase with reference to pyrenoid morphology in chloroplasts of synchronized Euglena gracilis Cells. Plant Physiol 92:802–808

    Article  CAS  Google Scholar 

  • Potting J, Scho W, Blok B, Hauschild M (1998) Comparison of the acidifying impact from emissions with different regional origin in life-cycle assessment. J Hazard Mater 61:155–162

    Article  CAS  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2, during the past decades. Tellus 9(1):18–27

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber NA, Key RM, Lee Kitack, Bullister JL, Wanninkhof R, Wong CS, Douglas WR, Wallace, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Schafer A, Victor DG (1999) Global passenger travel: implications for carbon dioxide emissions. Energy 24:657–679

    Article  CAS  Google Scholar 

  • Thomas H, Shneider B (1999) The seasonal cycle of carbon dioxide in Baltic sea surface waters. J Mar Sys 22:53–67

    Article  Google Scholar 

  • Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676

    Article  Google Scholar 

  • Unger J, Endres S, Wannicke N, Engel A, Voss A, Nausch G, Nausch M (2013) Response of Nodularia spumigena to pCO2 part 3: turnover of phosphorus compounds. Biogeosciences 10:1483–1499

    Article  Google Scholar 

  • Vedantham A, Oppenheimer M (1998) Long-term scenarios for aviation: demand and emissions of CO2 and NOx. Energy Policy 26(8):625–641

    Article  Google Scholar 

  • Wang X, Chunbo H, Zhane F, Chuanping F, Yingnan Y (2011) Inhibition of the growth of two blue-green algae species (Microsystis aeruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide. Bioresour Technol 102(10):5742–5748

    Article  CAS  Google Scholar 

  • Wasmund N, Tuimala J, Suikkanen J, Vandepitte L, Kraberg A (2011) Long-term trends in phytoplankton composition in the western and central Baltic sea. J Mar Sys 87:145–159

    Article  Google Scholar 

  • Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic sea. ICES J Mar Sc 60:177–186

    Article  Google Scholar 

  • Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:2915–2923

    Article  CAS  Google Scholar 

  • Yang G, Gao K (2012) Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Mar Environ Res 79:142–151

    Article  Google Scholar 

  • Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev of Earth Planet Sci 40:141–165

    Article  CAS  Google Scholar 

  • Zeebe RE, Ridgwell A (2011) Past changes of ocean carbonate chemistry. In: Gatuso JP, Hansson L (eds) Ocean acidification. Oxford University Pres, Oxford, pp 21–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Cichowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cichowska, A., Kosakowska, A. (2014). Ocean Acidification: Environmental Issue and Its Impact on Marine Life. In: Zielinski, T., Pazdro, K., Dragan-Górska, A., Weydmann, A. (eds) Insights on Environmental Changes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-03683-0_9

Download citation

Publish with us

Policies and ethics