Attenuation of Groundwater Flow Due to Irregular Waves in Permeable Sea Bottom

Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

The disappearance of wave energy in porous medium, expressed by the decreasing pore pressure, depends on the properties of the soil matrix and compressibility of water in the matrix pores. On the other hand, the compressibility of pore water depends to a large extent on the content of air/gas in water. Thus, it seems that the problem of water circulation resulting from surface waves is in fact a problem from the theory of multiphase media. Transmittance functions between surface waves and pore pressure at different depths as a result of the linear wave theory well reproduce the experimental data at frequencies close to the spectrum of peak energy.

Keywords

Pore pressure Permeable beach Circulation of groundwater Filtering Modeling Irregular waves 

References

  1. Belibassakis K (2012) Water-wave induced groundwater pressure and flow in variable bathymetry regions and sandy beaches by an enhanced coupled-mode model. Ocean Eng 47:104–118CrossRefGoogle Scholar
  2. Bendat JS, Piersol AG (1976) Metody analizy i pomiaru sygnalow losowych. PWN, WarszawaGoogle Scholar
  3. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. Part 1: low frequency range, Part 2: higher frequency range. J Acoust Soc Am 28:168–191CrossRefGoogle Scholar
  4. Huettel M, Roy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494:231–236CrossRefGoogle Scholar
  5. Huettel M, Rush A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45(3):534–549CrossRefGoogle Scholar
  6. Longuet-Higgins MS (1983) Wave set-up, percolation and undertow in the surf zone. Proc Roy Soc London A390:283–291CrossRefGoogle Scholar
  7. Massel SR, Przyborska A, Przyborski M (2005) Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory. Oceanologia 47(3):291–323Google Scholar
  8. Massel SR, Przyborska A, Przyborski M (2004) Attenuation of wave-induced groundwater pressure in shallow water. Part 1. Oceanologia 46(3):383–404Google Scholar
  9. Massel SR (1982) Rozkład ciśnień porowych wywołanych falowaniem wia-trowym w piaszczystej warstwie dna morskiego. Rozprawy Hydrotech- niczne -Zeszyt 44Google Scholar
  10. Massel SR (1976) Gravity waves propagated over a permeable bottom. J Waterway Div 102:111–121Google Scholar
  11. McLachlan A (1989) Water filtration by dissipative beaches. Limnol Oceanogr 34:774–780CrossRefGoogle Scholar
  12. Mei CC, Foda MA (1981) Wave-induced responses in a fluid-filled poro-elastic solid with a free surface—a boundary layer theory. Geophys J Roy Astron Soc 66:597–631CrossRefGoogle Scholar
  13. Moshagen H, Torum A (1975) Wave-induced pressures in permeable sea-beds. J Waterway Div 101:49–57Google Scholar
  14. Otnes EK, Enochson L (1972) Analiza numeryczna szeregów czasowych. Tytuł oryginalny: Time-series analysis—data processing. Wiley, New York, 467 stronGoogle Scholar
  15. Putman JA (1949) Loss of wave energy due to percolation in a permeable sea bottom. Trans Am Geophys Union 30:349–356CrossRefGoogle Scholar
  16. de Rouck J, Troch P (2002) Pore water pressure response due to tides and waves based on prototype measurements. PIANC Bull 110:9–31Google Scholar
  17. Shum KT (1993) The effects of wave-induced pore water circulation on the transport of reactive solutes below a rippled sediment bed. J Geoph Res 98:10289–10301CrossRefGoogle Scholar
  18. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  19. Tørum A (2007) Wave induced pore pressure—air/gas kontent. J Waterway, Port, Coastal, Ocean Eng 133:83–86CrossRefGoogle Scholar
  20. Węsławski JM, Andrulewicz E, Kotwicki L, Kuzebski E, Lewandowski A, Linkowski T, Massel SR, Musielak S, Olenczuk-Neyman K, Pempkowiak J, Piekarek-Jankowska H, Radziejewska T, Różynski G, Sagan I, Skóra KE, Szefler K, Urbanski J, Witek Z, Wołowicz M, Zachowicz J, Zarzycki T (2006) Basis for a valuation of the polish exclusive economic zone of the Baltic Sea: rationale and quest for tools. Oceanologia 48:145–167Google Scholar
  21. Verruijt A (1969) Elastic storage of aquifers. In: Deweist RJM (ed) W zbiorze: flow through porous media. Academic Press, New York, pp 331–376Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of OceanologyPolish Academy of SciencesWarsawPoland

Personalised recommendations