A Modern Approach to Aerosol Studies Over the Baltic Sea

  • A. Strzalkowska
  • P. Makuch
  • O. Zawadzka
  • P. Pakszys
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)


Aerosols measured in coastal areas are significantly different from those over an open sea, both in terms of structure and physical properties. The aerosol composition and concentrations are generally uniform in the open sea area. In the case of coastal areas, the composition may be changed within a short period of time. Aerosols in coastal zone can be divided into three groups: the sea, a mixture of continental and maritime, and continental. This chapter describes the most representative day of a research campaign designed to characterize the optical properties of aerosols in the Baltic Sea (open sea and coastal areas). During the campaign, simultaneous measurements of aerosol optical depth were carried out at four stations around the Baltic Sea—Bornholm, Sopot, Preila and Liepaja, using the hand-held Microtops II sun photometers. The studies were supplemented with satellite data (MODIS) and the analysis of air mass back-trajectories at various altitudes and wind fields. Measurements were performed at four stations. Simultaneous measurements at these stations with use of Microtops sun photometer can provide important information on the aerosol optical depth (AOD) and hence on the radiation balance. Data obtained with Microtops complement well with those obtained from MODIS. Using wind field profiles we possibly detected sea surface impact on aerosol concentrations in Bornholm, where on 3 August 2011 the AOD was significantly greater, along with a strong onshore winds.


Aerosol Baltic Microtops MODIS AERONET MAN 



This research has been made within the framework of the NASA/AERONET Program and the support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment—SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09. It has also been made within the framework of the NASA/AERONET Program.


  1. Blanchard DC, Woodcock AH (1957) Bubble formation and modification in the sea and its meteorological significance. Tellus 9:145–158CrossRefGoogle Scholar
  2. Blanchard DC (1963) The electrification of the atmosphere by particle from bubbles in the sea. Prog Oceanog 1:171–202CrossRefGoogle Scholar
  3. Christensen JH (1997) The Danish Eulerian hemispheric model: a three-dimensional air pollution model used for the Arctic. Atmos Environ 31:4169–4191CrossRefGoogle Scholar
  4. Chylek P, Henderson B, Mishchenko M (2003) Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval. J Geophys Res 108(D24), 4764 ppGoogle Scholar
  5. d’Almeida G, Koepke P, Shettle EP (1991) Atmospheric aerosols: global climatology and radiative characteristics. A. Deepak Publication, Hampton, Va, 561 ppGoogle Scholar
  6. Dera J (1983) Fizyka morza, PWN (in Polish)Google Scholar
  7. Fitzgerald JW (1991) Marine aerosols: a review. Atmos Environ ZSA 25(3):533–546CrossRefGoogle Scholar
  8. Gabric AJ, Gregg W, Najjar R, Erickson D, Matrai P (2001) Modelling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review. Chemosphere—global change. Science 3:377–392Google Scholar
  9. Gabric AJ, Shepard JM., Knight JM, Jones G, Trevena AJ (2005) Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: evidence for the influence of sea ice. Global Biogeochemical Cycles 19(GB4018). doi: 10.1029/2005GB002546
  10. Gao B-C, Montes MJ, Ahmad Z, Davis CO (2000) Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl Optics 39(6):887–896CrossRefGoogle Scholar
  11. Glantz P, Nilsson DE, von W Hoyningen-Huene (2006) Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean. Atmos Chem Phys Discuss 6:11621–11651CrossRefGoogle Scholar
  12. Hobbs PV (2000) Introduction to atmospheric chemistry. Cambridge University Press, USA, pp 82–100CrossRefGoogle Scholar
  13. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16CrossRefGoogle Scholar
  14. Holben BN, Tanr′e D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer J, Chatenet B, Lavenue F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karnieli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106:12067–12097CrossRefGoogle Scholar
  15. Holton JR, Curry JA, Pyle JA (2003) Encyclopaedia of atmospheric science, vol 1. Academic Press, Amsterdam, Boston, p 53Google Scholar
  16. Ichoku C, Kaufman YJ, Remer LA, Levy R (2004) Global aerosol remote sensing from MODIS. Adv Space Res 34:820–827CrossRefGoogle Scholar
  17. IPCC Fourth Assessment Report (AR4), Climate Change (2007): Synthesis ReportGoogle Scholar
  18. Jacob D.J., Andreas M.O., Bigg E.K., Duce R.A., Fung I., Hidy G.M., Legrand M., Prospero J.M., Raes F., Warren S.G., Wiedensohler A. (1995). Group Report: What Factors Influence Atmospheric Aerosols, How Have They Changed in the Past, and How Might They Change in the Future, in Aerosol Forcing of Climate Edited by R.J. Charlson and J. Heintzenburg. Wiley, pp. 183–195Google Scholar
  19. Kastendeuch PP, Najjar G (2003) Upper-air wind profiles investigation for tropospheric circulation study. Theor Appl Climatol 75:149–165CrossRefGoogle Scholar
  20. Kauffman YJ, Smirnov A, Holben BN, Dubovik O (2001) Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties. Geophys Res Lett 28(17):3251–3254CrossRefGoogle Scholar
  21. Knobelspiesse KD, Pietras C, Fargion GS, Wang M, Frouin R, Miller MA, Subramaniam A, Balch WM (2004) Maritime aerosol optical thickness measured by handheld sun photometers. Remote Sens Environ 93:87–106CrossRefGoogle Scholar
  22. Kratzer S, Vinterhav C (2010) Improvement of MERIS level 2 products in Baltic Sea coastal areas by applying the improved contrast between ocean and land processor (ICOL)—data analysis and validation. Oceanologia 52(2):211–236CrossRefGoogle Scholar
  23. Kuśmierczyk-Michulec J, Rozwadowska A (1999) Seasonal changes of the aerosol optical thickness for the atmosphere over the Baltic Sea—preliminary results. Oceanologia 41(2):127–145Google Scholar
  24. Kuśmierczyk-Michulec J, Marks R (2000) The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and North Seas. J Aerosol Sci 31(11):1299–1316CrossRefGoogle Scholar
  25. Kuśmierczyk-Michulec J, de Leeuw G, Gonzalez CR (2002) Empirical relationships between mass concentration and Ångström parameter. Geophys Res Lett 29(7):1145. doi: 10.1029/2001GL014128 CrossRefGoogle Scholar
  26. Levy RC, Remer LA, Kleidman RG, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420. doi: 10.5194/acp-10-10399-2010 CrossRefGoogle Scholar
  27. Morys M, Mims III FM, Hagerup S, Anderson SE, Baker A, Kia J,Walkup T (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and sun photometer. J Geophys Res 106(D13), 14573–14582. doi: 10.1029/2001JD900103 Google Scholar
  28. Niemi JV, Tervahattu H, Koskentalo T, Sillanpää M, Hillamo R, Kumala M, Vehkamäki H (2003) Studies on the long-range transport episodes of particles in Finland in March and August 2002. Helsinki Metropolit Area Council 10, 58 ppGoogle Scholar
  29. Niemi JV, Tervahattu H, Vehkamäki H, Martikainen J, Laakso L, Kumala M, Aarnio P, Koskentalo T, Sillanp¨a¨a M, Makkonen U (2005) Characterization of aerosol particles episodes in Finland caused by wildfires in Eastern Europe. Atmos Chem Phys 5(8):2299–2310CrossRefGoogle Scholar
  30. Porter JN, Miller M, Pietras C, Motell C (2000) Ship-based sun photometer measurements using sun photometers. J Atmos Oceanic Technol 18:765–774CrossRefGoogle Scholar
  31. Ruddick KG, Ovidio F, Rijkeboer M (2000) Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl Optics 39(6):897–912CrossRefGoogle Scholar
  32. Satheesh SK, Moorthy KK (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39(11):2089–2110CrossRefGoogle Scholar
  33. Schroeder T, Behnert I, Schaale M, Fischer J, Doerffer R (2007) Atmospheric correction algorithm for MERIS above case-2 waters. Int J Remote Sens 28(7):1469–1486CrossRefGoogle Scholar
  34. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York, p 1326Google Scholar
  35. Smirnov A, Holben BN, Slutsker I, Giles DM, McClain CR, Eck TF, Sakerin SM, Macke A, Croot P, Zibordi G, Quinn PK, Sciare J, Kinne S, Harvey M, Smyth TJ, Piketh S, Zielinski T, Proshutinsky A, Goes JI, Nelson NB, Larouche P, Radionov VF, Goloub P, Krishna Moorthy K, Matarrese R, Robertson EJ, Jourdin F (2009) Maritime aerosol network as a component of aerosol robotic network. J Geophys Res 114:1–10. doi: 10.1029/2008JD011257 Google Scholar
  36. Smirnov A, Holben BN, Dubovik O, O’Neall NT, Eck TF, Westphal DG, Goroch AK, Pietras C, Slutsker I (2002) Atmospheric aerosol optical properties in the Persian Gulf. J Atmos Sci 59:620–634CrossRefGoogle Scholar
  37. Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2003) Effect of wind speed on columnar aerosol optical properties at Midway Island. J Geophys Res 108(D24), 10 4802 pp. doi: 10.1029/2003JD003879
  38. Smirnov A A, Villevalde Y, O’Neill NT, Royer A, Tarussov A (1995) Aerosol optical depth over the ocean: analysis in term of synoptic air mass type. J Geophys Res 100(D8):16639–16650CrossRefGoogle Scholar
  39. Smirnov, Holben BN, Giles DM, Slutsker I, O’Neill NT, Eck TF, Macke A, Croot P, Courcoux Y, Sakerin SM, Smyth TJ, Zielinski T, Zibordi G, Goes JI, Harvey MJ, Quinn PK, Nelson NB, Radionov VF, Duarte CM, Losno R, Sciare J, Voss KJ, Kinne S, Nalli NR, Joseph E, Krishna Moorthy K, Covert DS, Gulev SK, Milinevsky G, Larouche P, Belanger S, Horne E, Chin M, Remer LA, Kahn RA, Reid JS, Schulz M, Heald CL, Zhang J, Lapina K, Kleidman RG, Griesfeller J, Gaitley BJ, Tan Q, Diehl TL (2011) Maritime aerosol network as a component of AERONET—first results and comparison with global aerosol models and satellite retrievals. Atmos Meas Tech 4:583–597. doi: 10.5194/amt-4-583-2011 CrossRefGoogle Scholar
  40. Stigebrandt A, Gustafsson BG (2003) Response of the Baltic Sea to climate change-theory and observations. J Sea Res 49(4):243–256CrossRefGoogle Scholar
  41. Witek ML, Flatau PJ, Quinn PK, Westphal DL (2007) Global sea-salt modeling: results and validation against multicampaign shipboard measurements. J Geophys Res 112:D08215. doi: 10.1029/2006JD007779 Google Scholar
  42. Zdun A, Rozwadowska A, Kratzer S (2011) Seasonal variability in the optical properties of Baltic aerosols. Oceanologia 53(1):7–34CrossRefGoogle Scholar
  43. Zielinski T (1998) Changes in aerosol concentration with altitude in the marine boundary layer in coastal areas of the Southern Baltic Sea. Bull Pol Acad Sci Earth Sci 46(3–4):133–139Google Scholar
  44. Zielinski T, Petelski T, Makuch P, Strzalkowska A, Ponczkowska A, Markowicz K, Chourdakis G, Georgoussis G, Kratzer S (2012) Sudies of aerosols advected to coastal areas with use of remote techniques. Acta Geophys 60(5):1359–1385. doi: 10.2478/s11600-011-0075-4 CrossRefGoogle Scholar
  45. Zielinski T, Zielinski A, Piskozub J, Drozdowska V, Irczuk M (1999) Aerosol optical thickness over the coastal area of the southern Baltic Sea. Optica Applicata XXIX(4):339–447Google Scholar
  46. Zielinski T, Zielinski A (2002) Aerosol extinction and optical thickness in the atmosphere over the Baltic Sea determined with lidar. J Aerosol Sci 33(6):47–61CrossRefGoogle Scholar
  47. Zielinski T (2006) Physical properties of aerosol near-water layer in coastal areas. Rozprawy i Monografie IOPAN 18:164 (in Polish)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. Strzalkowska
    • 1
  • P. Makuch
    • 1
  • O. Zawadzka
    • 2
  • P. Pakszys
    • 1
  1. 1.Institute of Oceanology of the Polish Academy of SciencesSopotPoland
  2. 2.University of WarsawWarsaw Poland

Personalised recommendations