Skip to main content

Evaluating Sparse Codes on Handwritten Digits

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8272))

Abstract

Sparse coding of visual information has been of interest to the neuroscientific community for many decades and it is widely recognised that sparse codes should exhibit a high degree of statistical independence, typically measured by the kurtosis of the response distributions. In this paper we extend work on the hierarchical temporal memory model by studying the suitability of the augmented spatial pooling (ASP) sparse coding algorithm in comparison with independent component analysis (ICA) when applied to the recognition of handwritten digits. We present an extension to the ASP algorithm that forms synaptic receptive fields located closer to their respective columns and show that this produces lower Naïve Bayes classification errors than both ICA and the original ASP algorithm. In evaluating kurtosis as a predictor of classification performance, we also show that additional measures of dispersion and mutual information are needed to reliably distinguish between competing approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, E.T., Rasquinha, R.J., Zhang, K., Connor, C.E.: A sparse object coding scheme in area v4. Current Biology 21(4), 288–293 (2011)

    Article  Google Scholar 

  2. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1), 1–47 (1991)

    Article  Google Scholar 

  3. Friston, K.: Learning and inference in the brain. Neural Networks 16(9), 1325–1352 (2003)

    Article  Google Scholar 

  4. Fu, M., Yu, X., Lu, J., Zuo, Y.: Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483(7387), 92–95 (2012)

    Article  Google Scholar 

  5. George, D., Hawkins, J.: A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In: Proceedings of the International Joint Conference on Neural Networksm, IJCNN 2005, pp. 1812–1817 (2005)

    Google Scholar 

  6. Hawkins, J., Ahmad, S., Dubinsky, D.: Hierarchical temporal memory including HTM cortical learning algorithms. Tech. rep., Numenta, Inc, Palto Alto (2011), https://www.groksolutions.com/technology.html#cla-whitepaper

  7. Hawkins, J., Blakeslee, S.: On intelligence. Henry Holt, New York (2004)

    Google Scholar 

  8. Hawkins, J., George, D.: Hierarchical temporal memory: Concepts, theory and terminology. Tech. rep., Numenta, Inc, Palto Alto (2006), http://www.numenta.com/htm-overview/education/Numenta_HTM_Concepts.pdf

  9. Hyvärinen, A., Hurri, J., Hoyer, P.: Natural Image Statistics: A probabilistic approach to early computational vision. Springer-Verlag, New York Inc. (2009)

    Book  Google Scholar 

  10. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Components Analysis. John Wiley and Sons, Inc., New York (2001)

    Book  Google Scholar 

  11. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3361–3368 (2011)

    Google Scholar 

  12. LeCun, Y., Cortes, C.: MNIST handwritten digit database. AT&T Labs (1998), http://yann.lecun.com/exdb/mnist

  13. Lee, T.S., Mumford, D.: Hierarchical Bayesian inference in visual cortex. Journal of the Optical Society of America A 20(7), 1434–1448 (2003)

    Article  Google Scholar 

  14. Malone, B.J., Kumar, V.R., Ringach, D.L.: Dynamics of receptive field size in primary visual cortex. Journal of neurophysiology 97(1), 407–414 (2007)

    Article  Google Scholar 

  15. Mountcastle, V.B.: Introduction to the special issue on computation in cortical columns. Cerebral Cortex 13(1), 2–4 (2003)

    Article  Google Scholar 

  16. Olshausen, B.A., et al.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  17. Stone, J.V.: Independent component analysis. Wiley Online Library (2004)

    Google Scholar 

  18. Thornton, J., Main, L., Srbic, A.: Fixed frame temporal pooling. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 707–718. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Thornton, J., Srbic, A.: Spatial pooling for greyscale images. International Journal of Machine Learning and Cybernetics 4, 207–216 (2013)

    Article  Google Scholar 

  20. Thornton, J., Srbic, A., Main, L., Chitsaz, M.: Augmented spatial pooling. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 261–270. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Willmore, B.D., Mazer, J.A., Gallant, J.L.: Sparse coding in striate and extrastriate visual cortex. Journal of Neurophysiology 105(6), 2907–2919 (2011)

    Article  Google Scholar 

  22. Willmore, B., Tolhurst, D.J.: Characterizing the sparseness of neural codes. Network: Computation in Neural Systems 12(3), 255–270 (2001)

    Google Scholar 

  23. Willmore, B., Watters, P.A., Tolhurst, D.J.: A comparison of natural-image-based models of simple-cell coding. Perception-London 29(9), 1017–1040 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Main, L., Cowley, B., Kneller, A., Thornton, J. (2013). Evaluating Sparse Codes on Handwritten Digits. In: Cranefield, S., Nayak, A. (eds) AI 2013: Advances in Artificial Intelligence. AI 2013. Lecture Notes in Computer Science(), vol 8272. Springer, Cham. https://doi.org/10.1007/978-3-319-03680-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03680-9_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03679-3

  • Online ISBN: 978-3-319-03680-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics