Skip to main content

A Framework for the Evaluation of Methods for Road Traffic Assignment

  • Conference paper
  • 2592 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8272))

Abstract

Research in traffic assignment relies largely on experimentation. The outcomes of experiments using different traffic assignment methods on different road network scenarios may vary greatly. It is difficult for the reader to assess the quality of the results without prior knowledge about the difficulty of the road network. In the current work, we propose an approximate metric to characterise the difficulty of network scenarios which takes travellers’ origins and destinations as well as link capacities into account rather than relying on the size of the network. As this metric considers number of overlapping routes between the origins and destinations of the travelles, a higher number in the metric would indicate a higher possibility of congestion in the road network scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazzan, A.L., Klügl, F.: Re-routing Agents in an Abstract Traffic Scenario (2008)

    Google Scholar 

  2. Zhu, S., Levinson, D., Zhang, L.: An agent-based route choice model. Working Papers 000089, University of Minnesota: Nexus Research Group (2007)

    Google Scholar 

  3. Sadek, A.W., Smith, B.L., Demetsky, M.J.: Dynamic traffic assignment: Genetic algorithms approach. Transportation Research Record: Journal of the Transportation Research Board 1588, 95–103 (1997)

    Article  Google Scholar 

  4. Cruz, F., van Woensel, T., Smith, J.M., Lieckens, K.: On the system optimum of traffic assignment in state-dependent queueing networks. European Journal of Operational Research 201(1), 183–193 (2010)

    Article  MATH  Google Scholar 

  5. D’Acierno, L., Montella, B., De Lucia, F.: A stochastic traffic assignment algorithm based on ant colony optimisation. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 25–36. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. de Dios Ortuzar, J., Willumsen, L.G.: Modelling Transport, 2nd edn. John Willey & Sons (1994)

    Google Scholar 

  7. Fricker, J.D., Whitford, R.K.: Fundamentals of transportation engineering: a multimodal approach. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  8. Bazzan, A.L.: Traffic as a Complex System: Four Challenges for Computer Science and Engineering (2007)

    Google Scholar 

  9. Chen, O., Ben-Akiva, M.: Game-Theoretic Formulations of Interaction Between Dynamic Traffic Control and Dynamic Traffic Assignment. Transportation Research Record: Journal of the Transportation Research Board 1617(-1), 179–188 (1998)

    Article  Google Scholar 

  10. Kitamura, R., Nakayama, S.: Can travel time information influence network flow? - Implications of the minority game. Transportation Research Record, 14–20 (2007)

    Google Scholar 

  11. Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolutionary game. Physica A 246(3-4), 12 (1997)

    Article  Google Scholar 

  12. Galib, S.M., Moser, I.: Road traffic optimisation using an evolutionary game (2011)

    Google Scholar 

  13. Dehmer, M., Barbarini, N., Varmuza, K., Graber, A.: A Large Scale Analysis of Information-Theoretic Network Complexity Measures Using Chemical Structures. PLoS ONE 4(12), e8057 (2009)

    Google Scholar 

  14. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  15. Constantine, G.: Graph complexity and the laplacian matrix in blocked experiments. Linear and Multilinear Algebra 28, 8 (1990)

    Article  MathSciNet  Google Scholar 

  16. Jukna, S.: On graph complexity. Combinatorics, Probability and Computing 15, 22 (2006)

    MathSciNet  Google Scholar 

  17. Kim, J., Wilhelm, T.: What is a complex graph? Physica A: Statistical Mechanics and its Applications 387(11), 2637–2652 (2008)

    Article  MathSciNet  Google Scholar 

  18. da F. Costa, L., Rodrigues, F., Travieso, G.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 76 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Galib, S., Moser, I. (2013). A Framework for the Evaluation of Methods for Road Traffic Assignment. In: Cranefield, S., Nayak, A. (eds) AI 2013: Advances in Artificial Intelligence. AI 2013. Lecture Notes in Computer Science(), vol 8272. Springer, Cham. https://doi.org/10.1007/978-3-319-03680-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03680-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03679-3

  • Online ISBN: 978-3-319-03680-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics