Skip to main content

Improving the Motion of a Sensing Antenna by Using an Input Shaping Technique

  • Conference paper
ROBOT2013: First Iberian Robotics Conference

Abstract

This work proposes an open loop control for driving a flexible-link based sensor. The control strategy is based on an (IS) Input Shaping technique in order to reduce link vibrations and includes two algebraic controllers to deal with precise motor positioning, as well as minimize the high non-linear motor friction. The antenna performs free azimuthal and vertical movements as part of a first driving stage when moving the antenna fast and accurately, before collision and while searching for precise areas of objects. The vertical movement is clearly non-linear due to the gravity effect. Some experiments illustrate that the controllers provided significant results driving the motors accurately and reducing large part of the flexible-link vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prescott, T.J., Pearson, M.J.: Whisking with robots. IEEE Robotics and Automation Magazine 16(3), 42–50 (2009), doi:10.1109/MRA.2009.933624

    Article  Google Scholar 

  2. Bellezza, F., Lanari, L., Ulivi, G.: Exact modelling of the flexible slewing link. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 734–804 (1990)

    Google Scholar 

  3. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaneko, M., Kanayama, N., Tsuji, T.: Active antenna for contact sensing. IEEE Transactions on Robotics and Automation 14(2), 278–291 (1998)

    Article  Google Scholar 

  5. Ueno, N., Kaneko, M., Svinin, M.: Theoretical and experimental Investigation on dynamic Active Antenna. In: Proc. of the International Conference of Robotics and Automation, vol. 4, pp. 3557–3563 (1996)

    Google Scholar 

  6. Clements, T.N., Rahn, C.D.: Three dimensional contact imaging with an actuated whisker. IEEE Transactions on Robotics 22(4), 844–848 (2006)

    Article  Google Scholar 

  7. Zhao, H., Rahn, C.D.: Repetitive Learning Control of a Flexible Whisker in Tip Contact with an Unknown Surface. Journal of Vibration and Control 17(2), 197–203 (2010)

    Article  MathSciNet  Google Scholar 

  8. Scholz, G.R., Rahn, C.D.: Profile sensing with an actuated whisker. IEEE Transactions Robotics and Automation 20(1), 124–127 (2004), doi:10.1109/TRA.2003.820864

    Article  Google Scholar 

  9. Pearson, M.J., Mitchinson, B., Charles, S., Anthony, G., Prescott, P., Tony, J.: Biomimetic vibrissal sensing for robots. Trans. R. Soc. B (2011), doi:10.1098/rstb.2011.0164 366 2011

    Google Scholar 

  10. Castillo, C.F., Castillo, F.J., Feliu, V.: Experimental Validation of 2 degrees of freedom whisker sensor dynamic model. In: IFAC World Congress, vol. 18(Part 1), pp. 3148–3152 (2011), doi:10.3182/20110828-6-IT-1002.02360

    Google Scholar 

  11. Castillo, C.F., Castillo, F.J., Feliu, V.: Inverse dynamics feed forward based control of two degrees of freedom whisker sensor. In: IEEE International Conference on Mechatronics (ICM), Istanbul, Turkey, pp. 684–689., doi:10.1109/ICMECH.2011.5971202

    Google Scholar 

  12. Singer, N.C., Seering, W.C.: Preshaping command inputs to reduce system vibration. ASME Journal of Dynamics System, Measurement and Control 112(1), 76–82 (1990)

    Article  Google Scholar 

  13. Huey, J.R., Sorensen, K.L., Singhose, W.E.: Useful applications of closed loop signal shaping controllers. Control Engineering Practice 16(7), 836–846 (2008)

    Article  Google Scholar 

  14. Park, J., Chang, P.H.: Learning input shaping technique for non-LTI systems. ASME Journal of Dynamic Systems, Measurement, and Control 123(2), 288–293 (2001)

    Article  Google Scholar 

  15. Pereira, E., Trapero, J.R., Diaz, I.M., Feliu, V.: Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique. Automatica 45(4), 1046–1051 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sutton, R.P., Halikias, G.D., Plummer, A.R., Wilson, D.A.: Modelling and H  ∞  control of a single-link flexible manipulator. Proc. IMechE 213(I), 85–104 (1999)

    Google Scholar 

  17. Sira-Ramirez, H., Marquez, R., Fliess, M.: On the generalized PID control of linear dynamic systems. In: 6th Eur. Control Conf., Porto, Portugal, pp. 166–171 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Feliu Talegon, D., Castillo, C.F., Feliu Batlle, V. (2014). Improving the Motion of a Sensing Antenna by Using an Input Shaping Technique. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-319-03653-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03653-3_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03652-6

  • Online ISBN: 978-3-319-03653-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics