Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors

  • Božidara Cvetković
  • Boštjan Kaluža
  • Radoje Milić
  • Mitja Luštrek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8309)


This paper is focused on a machine-learning approach for estimating human energy expenditure during sport and normal daily activities. The paper presents technical feasibility assessment that analyses requirements and applicability of smart phone sensors to human energy expenditure. The paper compares and evaluates three different sensor configuration sets: (i) a heart rate monitor and two standard inertial sensors attached to the users thigh and chest; (ii) a heart rate monitor with an embedded inertial sensor and a smart phone carried in the pocket; and (iii) only a smart phone carried in the pocket. The accuracy of the models is validated against indirect calorimetry using the Cosmed system and compared to a commercial device for energy expenditure SenseWear armband. The results show that models trained using relevant features can perform comparable or even better than available commercial device.


human energy expenditure physical activity wearable sensors embedded smart phone sensors regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World health Organization, HEPA,
  2. 2.
    Cooper, S.B., Bandelow, S., Nute, M.L., Morris, J.G., Nevill, M.E.: The effects of a mid-morning bout of exercise on adolescents’ cognitive function. Mental Health and Physical Activity 5, 183–190 (2012)CrossRefGoogle Scholar
  3. 3.
    Hamer, M., Stamatakis, E.: Objectively assessed physical activity, fitness and subjective wellbeing. Mental Health and Physical Activity 3, 67–71 (2010)CrossRefGoogle Scholar
  4. 4.
    Kohl, H.W., Craig, C.L., Lambert, E.V., Inoue, S., Alkandari, J.R., Leetongin, G., Kahlmeier, S.: The pandemic of physical inactivity: global action for public health. The Lancet 380, 294–305 (2012)CrossRefGoogle Scholar
  5. 5.
    Webb, P., Annis, J.F., Troutman Jr., S.J.: Energy balance in man measured by direct and indirect calorimetry. American Journal of Clinical Nutrition 33, 1287–1298 (1980)Google Scholar
  6. 6.
    Levine, J.A.: Measurement of Energy Expenditure. Public Health Nutrition 8, 1123–1132 (2005)CrossRefGoogle Scholar
  7. 7.
    Speakman. J.: Doubly labelled water: Theory and practice. Springer (1997)Google Scholar
  8. 8.
  9. 9.
  10. 10.
    Lustrek, M., Gjoreski, H., Kozina, S., Cvetkovic, B., Mirchevska, V., Gams, M.: Detecting Falls with Location Sensors and Accelerometers. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence and the Twenty-Third Innovative Applications of Artificial Intelligence, pp. 1662–1667. AAAI Press (2011)Google Scholar
  11. 11.
    Kaluza, B., Cvetkovic, B., Dovgan, E., Gjoreski, H., Gams, M., Lustrek, M.: Multiagent Care System to Support Independent Living. International Journal on Artificial Intelligence Tools (accepted for publication, 2013)Google Scholar
  12. 12.
    Aminian, K., Mariani, B., Paraschiv-Ionescu, A., Hoskovec, C., Bula, C., Penders, J., Tacconi, C., Marcellini, F.: Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 5820–5823. IEEE Press (2011)Google Scholar
  13. 13.
    Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference using accelerometers on smart phones. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems and Applications, pp. 91–96. ACM, New York (2012)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Andre, D., Wolf, D.L.: Recent Advances in Free-Living Physical Activity Monitoring: A Review. J. Diabetes Sci. Technol. 1(5), 760–767 (2007)Google Scholar
  17. 17.
  18. 18.
    Leijdekkers, P., Gay, V.: User Adoption of Mobile Apps for Chronic Disease Management: A Case Study Based on myFitnessCompanion®. In: Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.) ICOST 2012. LNCS, vol. 7251, pp. 42–49. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., et al.: Compendium of physical activities: An update of activity codes and MET intensities. Medicine and Science in Sports and Exercise 32, 498–516 (2000)CrossRefGoogle Scholar
  20. 20.
    Heil, D.P.: Predicting activity energy expenditure using the actical activity monitor. Research Quarterly for Exercise and Sport 77, 64–80 (2006)Google Scholar
  21. 21.
    Bouten, C.V., Westerterp, K.R., Verduin, M., Janssen, J.D.: Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med. Sci. Sports Exerc. 26, 1516–1523 (1994)CrossRefGoogle Scholar
  22. 22.
    Crouter, S.E., Clowers, K.G., Bassett, D.R.: A novel method for using accelerometer data to predict energy expenditure. Journal of Applied Physiology 100, 1324–1331 (2006)CrossRefGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Samsung Galaxy SII,
  28. 28.
    Kozina, S., Gjoreski, H., Gams, M., Lustrek, M.: Three-layer Activity Recognition Combining Domain Knowledge and Meta-classification. J. Med. Biol. Eng. (2013)Google Scholar
  29. 29.
    Cvetković, B., Kaluža, B., Luštrek, M., Gams, M.: Multi-Classifier Adaptive Training: Specialising an Activity Recognition Classifier Using Semi-supervised Learning. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp. 193–207. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Tapia, E.M.: Using machine learning for real-time activity recognition and estimation of energy expenditure. Ph.D. Thesis, Massachusetts Institute of Technology (2008)Google Scholar
  31. 31.
    Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 53, 23–69 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009)CrossRefGoogle Scholar
  33. 33.
    Lustrek, M., Cvetkovic, B., Kozina, S.: Energy expenditure estimation with wearable accelerometers. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 5–8. IEEE Press (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Božidara Cvetković
    • 1
    • 3
  • Boštjan Kaluža
    • 1
    • 3
  • Radoje Milić
    • 2
  • Mitja Luštrek
    • 1
    • 3
  1. 1.Department of Intelligent SystemsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of SportsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Jožef Stefan International Postgradute SchoolLjubljanaSlovenia

Personalised recommendations