Inferring Model Structures from Inertial Sensor Data in Distributed Activity Recognition

  • Pierluigi Casale
  • Oliver Amft
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8309)

Abstract

Activity-Event-Detector (AED) digraphs can describe relations between human activities, activity-representing pattern events from sensors, and distributed detector nodes. AED graphs have been successfully used to perform network adaptations, including reconfiguring networks to reduce recognition complexity and network energy needs. In this paper, we present an approach to infer AED graph configurations from distributed sensor data. We utilise a non-parametric clustering procedure and derive all relevant information about the AED graph structure, including the detector-specific activity grouping and activity-detector relations from measured data. We analysed our approach using a previously published dataset and compared our inferred AED graph with those designed by an expert. The system based on the inferred AED graph yielded a performance boost of 15% in the final classification accuracy and reduced computational complexity of detectors. These results indicate that our approach is viable to automate the configuration of distributed activity recognition sensor-detector networks.

Keywords

context recognition wireless sensor networks clustering inertial sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rashidi, P., Mihailidis, A.: A survey on ambient assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics 17(3), 579–590 (2013)CrossRefGoogle Scholar
  2. 2.
    Schmidt, A.: Context-Aware Computing: Context-Awareness, Context-Aware User Interfaces, and Implicit Interaction (2013), http://www.interaction-design.org/encyclopedia/context-aware_computing.html
  3. 3.
    Amft, O., Lombriser, C.: Modelling of distributed activity recognition in the home environment. In: EMBC 2011: Proceedings of the 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1781–1784. IEEE (2011)Google Scholar
  4. 4.
    Lombriser, C., Amft, O., Zappi, P., Benini, L., Tröster, G.: Benefits of Dynamically Reconfigurable Activity Recognition in Distributed Sensing Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4, pp. 261–286. World Scientific Publishing Co. (2010)Google Scholar
  5. 5.
    Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)CrossRefGoogle Scholar
  6. 6.
    Aloimonos, Y.: Sensory grammars for sensor networks. Journal of Ambient Intelligence and Smart Environments 1(1), 15–21 (2009)Google Scholar
  7. 7.
    Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Troster, G.: Activity recognition from on-body sensors by classifier fusion: sensor scalability and robustness. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 281–286 (2007)Google Scholar
  8. 8.
    Sarkar, A.M.J., Hasan, K., Lee, Y.-K., Lee, S., Zabir, S.: Distributed activity recognition using key sensors. In: 11th International Conference on Advanced Communication Technology, ICACT 2009, vol. 03, pp. 2245–2250 (2009)Google Scholar
  9. 9.
    Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., Prueckner, S.: An event-driven approach to activity recognition in ambient assisted living. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 123–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Hierarchical activity recognition using automatically clustered actions. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 82–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  12. 12.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  13. 13.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  14. 14.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Breiman, L.: Some infinity theory for predictor ensembles. Tech. rep. (2001)Google Scholar
  16. 16.
    Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20(1), 68–86 (1971)CrossRefGoogle Scholar
  17. 17.
    Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)CrossRefGoogle Scholar
  18. 18.
    Ulrike, G.: Variable importance assessment in regression: Linear regression versus random forest. The American Statistician 63(4), 308–319 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Amft, O., Lombriser, C., Stiefmeier, T., Tröster, G.: Recognition of user activity sequences using distributed event detection. In: European Conference on Smart Sensing and Context (EuroSSC), pp. 126–141 (2007)Google Scholar
  20. 20.
    von Luxburg, U.: Clustering stability: An overview. Foundations and Trends in Machine Learning 2(3), 235–274 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Pierluigi Casale
    • 1
  • Oliver Amft
    • 1
  1. 1.ACTLab, Signal Processing SystemsTU EindhovenEindhovenThe Netherlands

Personalised recommendations