Skip to main content

Quantum Secret Sharing Based on Chinese Remainder Theorem in Hyperchaotic System

  • Conference paper
Cyberspace Safety and Security (CSS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8300))

Included in the following conference series:

Abstract

An novel quantum secret sharing (QSS) scheme is proposed based on Chinese Remainder Theory (CRT) with hyperchaotic encryption algorithm. The usage of hyperchaotic encryption strengthens the security of the quantum message. In addition, this scheme has high source capacity and convenience due to the utilization of GHZ measurement and high-dimension quantum channel. The analysis shows the presented protocol can resist the attacks from both outside eavesdroppers and inside dishonest participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(1829) (1999)

    Google Scholar 

  2. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  Google Scholar 

  3. Deng, F.G., Long, G.L., Zhou, H.Y.: An effcient quantum secret sharing scheme with Einstein-Podolsky-Rosen Pairs. Phys. Lett. A 340, 43 (2005)

    Article  Google Scholar 

  4. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Google Scholar 

  5. Yang, C.P., Gea-Banacloche, J.: Teleportation of rotations and receiver-encoded secret sharing. J. Opt. B: Quantum Semiclass. Opt. 3, 407 (2001)

    Article  Google Scholar 

  6. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Google Scholar 

  7. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Google Scholar 

  8. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  Google Scholar 

  9. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60 (2005)

    Article  Google Scholar 

  10. Bandyopadhyay, S.: Teleportation and Secret Sharing with Pure Entangled States. Phys. Rev. A 62, 012308 (2000)

    Google Scholar 

  11. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Google Scholar 

  12. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Google Scholar 

  13. Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420 (2004)

    Article  MathSciNet  Google Scholar 

  14. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Google Scholar 

  15. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Google Scholar 

  16. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  Google Scholar 

  17. Zhang, Z.J.: Controlled teleportation of an arbitrary n -qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 342, 60 (2005)

    Article  Google Scholar 

  18. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Google Scholar 

  19. Wang, J., Zhang, Q., Tang, C.J.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47, 454 (2007)

    Article  Google Scholar 

  20. Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)

    Article  Google Scholar 

  21. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)

    Google Scholar 

  22. Markham, D., Sanders, C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Google Scholar 

  23. Sarvepalli, P.K., Klappenecker, A.: Sharing classical secrets with Calderbank-Shor-Steane codes. Phys. Rev. A 80, 022321 (2009)

    Google Scholar 

  24. Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett 103, 020503 (2009)

    Google Scholar 

  25. Guo, Y., Zeng, G.H.: Encryption-based networking quantum teleportation with triplet Greenberger-Horne-Zeilinger States. Int. J. Quant. Infor. 8(5), 765 (2010)

    Article  Google Scholar 

  26. Cuquet, M., Calsamiglia, J.: Limited-path-length entanglement percolation in quantum complex networks. Phys. Rev. A 83, 032319 (2011)

    Google Scholar 

  27. Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)

    Google Scholar 

  28. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Informat. Theory 29, 208 (1983)

    Article  MathSciNet  Google Scholar 

  29. Shi, R.H., Sun, Q., Guo, Y., Lee, M.H.: Quantum Secret Sharing Based on Chienese Remainder Theorem. Commun. Theor. Phys. 55, 573–578 (2011)

    Article  Google Scholar 

  30. Gao, G.: Quantum Secret Communication by Using GHZ State in High-Dimensional Hilbert Space. Commun. Theor. Phys. 50, 368–370 (2008)

    Article  Google Scholar 

  31. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23 (2006)

    Article  Google Scholar 

  32. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Google Scholar 

  33. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Shi, R., Kang, Y., Zhang, Z. (2013). Quantum Secret Sharing Based on Chinese Remainder Theorem in Hyperchaotic System. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds) Cyberspace Safety and Security. CSS 2013. Lecture Notes in Computer Science, vol 8300. Springer, Cham. https://doi.org/10.1007/978-3-319-03584-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03584-0_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03583-3

  • Online ISBN: 978-3-319-03584-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics