Skip to main content

On Low-Fidelity Model Selection for Antenna Design Using Variable-Resolution EM Simulations

  • Chapter
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 256))

  • 1497 Accesses

Abstract

One of the most important tools of antenna design is electromagnetic (EM) simulation. High-fidelity simulations offer accurate evaluation of the antenna performance, however, they are computationally expensive. As a result, employing EM solvers in automated antenna design using numerical optimization techniques is quite challenging. A possible workaround are surrogate-based optimization (SBO) methods. In case of antennas, the generic way to construct the surrogate is through coarse-discretization EM simulations that are faster but, at the same time, less accurate. For most SBO algorithms, quality of such low-fidelity models may be critical for performance. In this work, we investigate the trade-offs between the speed and the accuracy of the low-fidelity antenna models as well as the impact of the model selection on the quality of the design produced by the SBO algorithm as well as the computational cost of the optimization process. Our considerations are illustrated using examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schantz, H.: The art and science of ultrawideband antennas. Artech House (2007)

    Google Scholar 

  2. Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House (2007)

    Google Scholar 

  3. Haupt, R.L.: Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antennas Propag. 55(3), 577–582 (2007)

    Article  Google Scholar 

  4. Kerkhoff, A.J., Ling, H.: Design of a band-notched planar monopole antenna using genetic algorithm optimization. IEEE Trans. Antennas Propag. 55(3), 604–610 (2007)

    Article  Google Scholar 

  5. Pantoja, M.F., Meincke, P., Bretones, A.R.: A hybrid genetic algorithm space-mapping tool for the optimization of antennas. IEEE Trans. Antennas Propag. 55(3), 777–781 (2007)

    Article  Google Scholar 

  6. Jin, N., Rahmat-Samii, Y.: Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53(11), 3459–3468 (2005)

    Article  Google Scholar 

  7. Halehdar, A., Thiel, D.V., Lewis, A., Randall, M.: Multiobjective optimization of small meander wire dipole antennas in a fixed area using ant colony system. Int. J. RF and Microwave CAE 19(5), 592–597 (2009)

    Article  Google Scholar 

  8. Jin, N., Rahmat-Samii, Y.: Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications. IEEE Trans. Antennas Propag. 56(5), 1269–1279 (2008)

    Article  Google Scholar 

  9. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52(1), 337–361 (2004)

    Article  Google Scholar 

  10. Koziel, S., Bandler, J.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54(10), 3721–3730 (2006)

    Article  Google Scholar 

  11. Koziel, S., Ciaurri, D.E., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.-S. (eds.) COMA. SCI, vol. 356, pp. 33–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Rayas-Sánchez, J.E.: EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans. Microwave Theory Tech. 52(1), 420–435 (2004)

    Article  Google Scholar 

  13. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microwave Theory Tech. 56(4), 867–879 (2008)

    Article  Google Scholar 

  14. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  15. Meng, J., Xia, L.: Support-vector regression model for millimeter wave transition. Int. J. Infrared and Milimeter Waves 28(5), 413–421 (2007)

    Article  Google Scholar 

  16. Buhmann, M.D., Ablowitz, M.J.: Radial Basis Functions: Theory and Implementations. Cambridge University (2003)

    Google Scholar 

  17. Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers 17(2), 129–150 (2001)

    Article  MATH  Google Scholar 

  18. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization, Prog. Aerospace Sciences 45(1-3), 50–79 (2009)

    Article  Google Scholar 

  19. Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech. 54(5), 2153–2159 (2006)

    Article  Google Scholar 

  20. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Magazine 9(6), 105–122 (2008)

    Article  Google Scholar 

  21. Swanson, D., Macchiarella, G.: Microwave filter design by synthesis and optimization. IEEE Microwave Magazine 8(2), 55–69 (2007)

    Article  Google Scholar 

  22. Rautio, J.C.: Perfectly calibrated internal ports in EM analysis of planar circuits. In: IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, pp. 1373–1376 (2008)

    Google Scholar 

  23. Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space mapping. IEEE Microwave Magazine 11(4), 96–110 (2010)

    Article  Google Scholar 

  24. Echeverria, D., Hemker, P.W.: Space mapping and defect correction. CMAM The International Mathematical Journal Computational Methods in Applied Mathematics 5(2), 107–136 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech. 58(11), 2829–2837 (2010)

    Article  Google Scholar 

  26. Koziel, S.: Adaptively adjusted design specifications for efficient optimization of microwave structures. Progress in Electromagnetic Research B (PIER B) 21, 219–234 (2010)

    Google Scholar 

  27. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Int. J. RF and Microwave CAE 20(5), 492–501 (2010)

    Article  Google Scholar 

  28. CST Microwave Studio, 2012. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2012)

    Google Scholar 

  29. HFSS. Release 13.0, ANSYS (2010), http://www.ansoft.com/products/hf/hfss/

  30. Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House (2006)

    Google Scholar 

  31. Lin, J.-M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley-IEEE Press (2002)

    Google Scholar 

  32. Harrington, R.F.: Field Computation by Moment Methods. Wiley-IEEE Press (1993)

    Google Scholar 

  33. Makarov, S.: Antenna and EM modeling with Matlab. Wiley-Interscience (2002)

    Google Scholar 

  34. Chen, Z.N.: Wideband microstrip antennas with sandwich substrate. IET Microw. Ant. Prop. 2(6), 538–546 (2008)

    Article  Google Scholar 

  35. Koziel, S., Bandler, J.W., Madsen, K.: Space mapping with adaptive response correction for microwave design optimization. IEEE Trans. Microwave Theory Tech. 57(2), 478–486 (2009)

    Article  Google Scholar 

  36. Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim. 15(1), 16–23 (1998)

    Article  Google Scholar 

  37. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)

    Google Scholar 

  38. Wi, S.-H., Lee, Y.-S., Yook, J.-G.: Wideband Microstrip Patch Antenna with U-shaped Parasitic Elements. IEEE Trans. Antennas Propagat. 55(4), 1196–1199 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziel, S., Ogurtsov, S., Leifsson, L. (2014). On Low-Fidelity Model Selection for Antenna Design Using Variable-Resolution EM Simulations. In: Obaidat, M., Filipe, J., Kacprzyk, J., Pina, N. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-03581-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03581-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03580-2

  • Online ISBN: 978-3-319-03581-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics