Skip to main content

Steiner Problems with Limited Number of Branching Nodes

  • Conference paper
Book cover Structural Information and Communication Complexity (SIROCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8179))

Abstract

Given an undirected weighted graph G with n nodes, the k-Undirected Steiner Tree problem is to find a minimum cost tree spanning a specified set of k nodes. If this problem and its directed version have several applications in multicast routing in packet switching networks, the modeling is not adapted anymore in networks based upon the circuit switching principle in which not all nodes are able to duplicate packets. In such networks, the number of branching nodes (with outdegree > 1) in the multicast tree must be limited.

We introduce the (k,p) −Steiner Tree with Limited Number of Branching nodes problems where the goal is to find an optimal Steiner tree with at most p branching nodes. We study, when p is fixed, its complexity depending on two criteria: the graph topology and the parameter k. In particular, we propose a polynomial algorithm when the input graph is acyclic and an other algorithm when k is fixed in an input graph of bounded treewidth. Moreover, in directed graphs where p ≤ k − 2, or in planar graphs, we provide an n ε-inapproximability proof, for any ε < 1.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-03578-9_29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, X., Du, D.Z.: Steiner trees in industry, vol. 11. Kluwer (2001)

    Google Scholar 

  2. Voß, S.: Steiner tree problems in telecommunications, pp. 459–492 (January 2006)

    Google Scholar 

  3. Rugeli, J., Novak, R.: Steiner tree algorithms for multicast protocols (1995)

    Google Scholar 

  4. Reinhard, V., Tomasik, J., Barth, D., Weisser, M.-A.: Bandwidth Optimization for Multicast Transmissions in Virtual Circuit Networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 859–870. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Reinhard, V., Cohen, J., Tomasik, J., Barth, D., Weisser, M.A.: Optimal configuration of an optical network providing predefined multicast transmissions. Comput. Netw. 56(8), 2097–2106 (2012)

    Article  Google Scholar 

  6. Gargano, L., Hell, P., Stacho, L., Vaccaro, U.: Spanning trees with bounded number of branch vertices. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 355–365. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Salazar-González, J.J.: The Steiner cycle polytope. EJOR 147(3), 671–679 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Steinová, M.: Approximability of the Minimum Steiner Cycle Problem. Computing and Informatics 29(6+), 1349–1357 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10(111), 111–121 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Robertson, N., Seymour, P.: The disjoint paths problem. Journal of Combinatorial Theory, Series B, 65–110 (1995)

    Google Scholar 

  11. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM Journal on Computing, 1–10 (1994)

    Google Scholar 

  12. Scheffler, P.: A Practical Linear Time Algorithm for Disjoint Paths in Graphs with Bounded Tree Width. Technical Report 396/1994, Fachbereich Mathematik (1994)

    Google Scholar 

  13. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta informatica 15(2), 141–145 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zelikovsky, A.: An 11/6-approximation algorithm for the network steiner problem. Algorithmica 9(5), 463–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hougardy, S., Prömel, H.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: Proc. SODA, pp. 448–453 (1999)

    Google Scholar 

  16. Du, D., Lu, B., Ngo, H., Pardalos, P.: Steiner tree problems. Encyclopedia of Optimization 5, 227–290 (2000)

    Google Scholar 

  17. Hsu, T.S., Tsai, K., Wang, D., Lee, D.: Steiner problems on directed acyclic graphs. Computing and Combinatorics, 21–30 (1996)

    Google Scholar 

  18. Charikar, M., et al.: Approximation algorithms for directed steiner problems. In: Proc. SODA, pp. 192–200 (1998)

    Google Scholar 

  19. Ming-IHsieh, E., Tsai, M.: Fasterdsp: A faster approximation algorithm for directed steiner tree problem. JISE 22, 1409–1425 (2006)

    MathSciNet  Google Scholar 

  20. Rothvoß, T.: Directed steiner tree and the lasserre hierarchy. CoRR abs/1111.5473 (2011)

    Google Scholar 

  21. Feige, U.: A threshold of ln n for approximating set cover. J. of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proc. STOC, pp. 585–594. ACM (2003)

    Google Scholar 

  23. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group steiner tree problem. In: Proc. SODA, pp. 253–259 (1998)

    Google Scholar 

  24. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: Chirkova, R., Dogac, A., Özsu, M.T., Sellis, T.K. (eds.) ICDE, pp. 836–845. IEEE (2007)

    Google Scholar 

  25. Cheriyan, J., Laekhanukit, B., Naves, G., Vetta, A.: Approximating rooted steiner networks. In: Proc. SODA, pp. 1499–1511 (2012)

    Google Scholar 

  26. Watel, D., Weisser, M.A., Bentz, C.: Inapproximability proof of DSTLB and USTLB in planar graphs, http://hal-supelec.archives-ouvertes.fr/hal-00793424

  27. Downey, R.G., Fellows, M.R.: Parameterized complexity, vol. 3. Springer (1999)

    Google Scholar 

  28. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. Journal of the ACM 36(4), 873–886 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watel, D., Weisser, MA., Bentz, C., Barth, D. (2013). Steiner Problems with Limited Number of Branching Nodes. In: Moscibroda, T., Rescigno, A.A. (eds) Structural Information and Communication Complexity. SIROCCO 2013. Lecture Notes in Computer Science, vol 8179. Springer, Cham. https://doi.org/10.1007/978-3-319-03578-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03578-9_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03577-2

  • Online ISBN: 978-3-319-03578-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics